CCPP SciDoc for UFS-SRW v3.0.0  SRW v3.0.0
Common Community Physics Package Developed at DTC
Bibliography
[1]

M. J. Alexander and T. J. Dunkerton. A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the Atmospheric Sciences, 56(24):4167–4182, 1999.

[2]

M. J. Alexander, M. Geller, C. McLandress, and et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 136(650):1103–1124, 2010.

[3]

J. C. Alpert, M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay. Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. pages 726–733, Baltimore, MD, 1988. Eighth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc.

[4]

J. C. Alpert, V. A. Yudin, and E. Strobach. Atmospheric gravity wave sources correlated with resolved-scale gw activity and sub-grid scale parameterization in the fv3gfs model. In AGU Fall Meeting 2019. AGU, 2019.

[5]

T. K. Andersen and J. M. Shepherd. A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. International Journal of Climatology, 34:391–402, 2014.

[6]

A. Arakawa and W. H. Schubert. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31:674–701, 1974.

[7]

A. Arakawa and C.-M. Wu. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70:1977–1992, 2013.

[8]

A. Arakawa, J.-H. Jung, and C.-M. Wu. Toward unification of the multiscale modeling of the atmosphere. Atmospheric Chemistry and Physics, 11(8):3731–3742, Apr 2011.

[9]

A.S.Monin and A.M.Obukhov. Basic laws of turbulent mixing in the atmosphere near the ground. Akad. Nauk SSSR, 24:163–187, 1954.

[10]

P. G. Baines and T. N. Palmer. Rationale for a new physically based parametrization of sub-grid scale orographic effects. Technical Memorandum 169, European Centre for Medium Range Weather Forecasts, 1990.

[11]

M. Baldwin, R. Treadon, and S. Contorno. Precipitation type prediction using a decision tree approach with NMC's mesoscale Eta model. In Preprints. 10th Conf. on Numerical Weather Prediction, pages 30–31, Portland, OR, 1994. Amer. Meteor. Soc.

[12]

P. Bechtold, M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634):1337–1351, 2008.

[13]

P. Bechtold, N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann. Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71:734–753, 2014.

[14]

J. Beck, J. Wolff, L. Carson, W. Li, M. Harrold, W. Mayfield, K. Y. Wong, J. Berner, P. Pegion, C. R. Alexander, and J. R. Carley. Implementation and testing of stochastic physics within fv3-lam and rrfs prototype ensembles using the common community physics package (ccpp). In 12th Conference on Transition of Research to Operations, number 7B.6. 102nd AMS Annual Meeting, 2022.

[15]

A.C.M. Beljaars, A.R.Brown, and N. Wood. A new parameterization of turbulent orographic form drag. Quarterly Journal of the Royal Meteorological Society, 130:1327–1347, 2004.

[16]

L Bengtsson and H. Kornich. Impact of a stochastic parameterization of cumulus convection, using cellular automata, in a meso-scale ensemble prediction sytem. Quarterly Journal of the Royal Meteorological Society, 142(695):1150–1159, 2016.

[17]

Lisa Bengtsson, Heiner Körnich, Erland Källén, and Gunilla Svensson. Large-scale dynamical response to subgrid-scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68(12):3132–3144, dec 2011.

[18]

L Bengtsson, M. Steinheimer, P. Bechtold, and J-F. Geleyn. A stochastic parameterization for deep convection using cellular automata. Quarterly Journal of the Royal Meteorological Society, 139(675):1533–1543, 2013.

[19]

Lisa Bengtsson, Jian-Wen Bao, Philip Pegion, Cecile Penland, Sara Michelson, and Jeffrey Whitaker. A model framework for stochastic representation of uncertainties associated with physical processes in NOAA's next generation global prediction system (NGGPS). Monthly Weather Review, 147(3):893–911, feb 2019.

[20]

L Bengtsson, J. Dias, S. Tulich, M. Gehne, and J-W. Bao. A stochastic parameterization of organized tropical convection using cellular automata for global forecasts in noaa's unified forecast system. Journal of Advances in Modeling Earth Systems, 13(1):21, 2021.

[21]

Lisa Bengtsson, Luc Gerard, Jongil Han, Maria Gehne, Wei Li, and Juliana Dias. A prognostic-stochastic and scale-adaptive cumulus convection closure for improved tropical variability and convective gray-zone representation in NOAA's unified forecast system (UFS). Monthly Weather Review, sep 2022.

[22]

S. G. Benjamin, D. Dévényi, S. S. Weygandt, K. J. Brundage, J. M. Brown, G. A. Grell, D. Kim, B. E. Schwartz, T. G. Smirnova, T. L. Smith, and et al. An hourly assimilation–forecast cycle: The RUC. Monthly Weather Review, 132(2):495–518, Feb 2004.

[23]

S. G. Benjamin, G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck. Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Monthly Weather Review, 132(2):473–494, Feb 2004.

[24]

S. G. Benjamin, J. M. Brown, and T. G. Smirnova. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Weather and Forecasting, 31(2):609–619, Apr 2016.

[25]

S. G. Benjamin, S. S. Weygandt, J. M. Brown, M. Hu, C. R. Alexander, T. G. Smirnova, J. B. Olson, E. P. James, D. C. Dowell, G. A. Grell, and et al. A north american hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144(4):1669–1694, Apr 2016.

[26]

S. G. Benjamin, T. G. Smirnova, E. P. James, E. J. Anderson, A. Fujisaki-Manome, J. G. W. Kelley, G. E. Mann, A. D. Gronewold, P. Chu, and S. G. T. Kelley. Inland lake temperature initialization via coupled cycling with atmospheric data assimilation. Geoscientific Model Development, 15(17):6659–6676, 2022.

[27]

E. H. Berbery, K. E. Mitchell, S. Benjamin, T. Smirnova, H. Ritchie, R. Hogue, and E. Radeva. Assessment of land-surface energy budgets from regional and global models. Journal of Geophysical Research: Atmospheres, 104(D16):19329–19348, Aug 1999.

[28]

E. X. Berry. Modification of the warm rain process. In Am. Meteorol. Soc., editor, 1st National Conference on Weather Modification, pages 81–85, Albany, N.Y, 1968.

[29]

A. K. Betts, A. B. Tawfik, and R. L. Desjardins. Revisiting hydrometeorology using cloud and climate observations. J. Hydrometeorol., 18(939-955), 2017.

[30]

P. Bourgouin. A method to determine precipitation types. Weather and Forecasting, 15:583–592, October 2000.

[31]

B. P. Briegleb. Delta-eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97:7603–7612, 1992.

[32]

V. Buchard, C. A. Randles, A. M. da Silva, and et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30:6851–6872, 2017.

[33]

J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28:181–189, 1971.

[34]

Jean-Pierre Chaboureau and Peter Bechtold. A simple cloud parameterization derived from cloud resolving model data: Diagnostic and prognostic applications. Journal of the Atmospheric Sciences, 59(15):2362–2372, aug 2002.

[35]

Jean-Pierre Chaboureau. Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during tropical convection, cirrus and nitrogen oxides (TROCCINOX). Journal of Geophysical Research, 110(D17), 2005.

[36]

J.-H. Chen and S.-J. Lin. The remarkable predictability of inter-annual variability of atlantic hurricanes during the past decade. Geophysical Research Letters, 38(L11804):6, 2011.

[37]

J.-H. Chen and S.-J. Lin. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26(2):380–398, 2013.

[38]

F. Chen, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.-Y. Duan, M. Ek, and A. Betts. Modeling of land-surface evaporation by four schemes and comparison with observations. J. Geophys. Res., 101(D3):7251–7268, 1996.

[39]

F. Chen, Z. Janjic, and K. Mitchell. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology, 85(3):391–421, 1997.

[40]

Xiaomin Chen, George H. Bryan, Andrew Hazelton, Frank D. Marks, and Pat Fitzpatrick. Evaluation and improvement of a TKE-based eddy-diffusivity mass-flux (EDMF) planetary boundary layer scheme in hurricane conditions. Weather and Forecasting, 37(6):935–951, jun 2022.

[41]

M. Chin, R. B. Rood, S-J. Lin, J-F. Muller, and A. M. Thompson. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105(D20):24671–24687, October 2000.

[42]

H.-J. Choi and S.-Y. Hong. An updated subgrid orographic parameterization for global atmospheric forecast models. Journal of Geophysical Research: Atmospheres, 120:12445–12457, 2015.

[43]

Bastien Chopard and Michel Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press, dec 1998.

[44]

M. D. Chou and M. J. Suarez. A solar radiation parameterization for atmospheric studies. Technical Memorandum 15, NASA, 1999.

[45]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J.S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91:233–244, 2005.

[46]

P. Colarco, A. da Silva, M. Chin, and T. Diehl. Online simulations of global aerosol distributions in the NASA GOES-4 model and comparisons to satellite and ground-based aerosol optical depth. Journal of Geophysical Research, 115(D14207):25, 2010.

[47]

M. Deng and G. G. Mace. Cirrus cloud microphysical properties and air motion statistics using cloud radar Doppler moments: water content, partical size, and sedimentation relationships. Geophysical Research Letters, 35(L17808), 2008.

[48]

J. C. Derber and W.-S. Wu. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Monthly Weather Review, 126:2287–2299, 1998.

[49]

A. Dethof and E. V. Holm. Ozone assimilation in the ERA-40 reanalysis project. Quarterly Journal of the Royal Meteorological Society, 130:2851–2872, 2004.

[50]

A. S. Donahue and P. M. Caldwell. Impact of physics parameterization ordering in a global atmosphere model. Journal of Advances in Modeling Earth Systems, (10.1002/2017MS001067):481–499, 2018.

[51]

E. E. Ebert and J. A. Curry. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97:3831–3836, 1992.

[52]

S. D. Eckermann, K. W. Hoppel, L. Coy, J. P. McCormack, D. E. Siskind, K. Nielsen, A. Kochenash, M. H. Stevens, C. R. Englert, W. Singer, and M. Hervig. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. Journal of Atmospheric and Solar-Terrestrial Physics, 71(3):531 – 551, 2009. Global Perspectives on the Aeronomy of the Summer Mesopause Region.

[53]

S. D. Eckermann. Explicitly stochastic parameterization of nonorographic gravity wave drag. Journal of the Atmospheric Sciences, 68(8):1749–1765, 2011.

[54]

M. B. Ek and A. A. M. Holtslag. Influence of soil moisture on boundary layer cloud development. J. Hydrometeorol., 5:86–99, 2004.

[55]

M. B. Ek and L. Mahrt. Daytime evolution of relative-humidity at the boundary-layer top. Monthly Weather Review, 122:2709–2721, 1994.

[56]

M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108(D22):8851, 2003.

[57]

M. Ern, Q. T. Trinh, P. Preusse, J. C. Gille, M. G. Mlynczak, J. M. Russell III, and M. Riese. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth System Science Data, 10(2):857–892, 2018.

[58]

R. Essery, N. Rutter, J. Pomeroy, and et al. SNOWMIP2: An evaluation of forest snow process simulations. Bulletin of the American Meteorological Society, 90(8):1120–1136, 2009.

[59]

R. Essery, H. Kim, L. Wang, P. Bartlett, A. Boone, C. Brutel-Vuilmet, E. Burke, M. Cuntz, B. Decharme, E. Dutra, X. Fang, Y. Gusev, S. Hagemann, V. Haverd, A. Kontu, G. Krinner, M. Lafaysse, Y. Lejeune, T. Marke, D. Marks, C. Marty, C. B. Menard, O. Nasonova, T. Nitta, J. Pomeroy, G. Schädler, V. Semenov, T. Smirnova, S. Swenson, D. Turkov, N. Wever, and H. Yuan. Snow cover duration trends observed at sites and predicted by multiple models. The Cryosphere, 14(12):4687–4698, 2020.

[60]

P. Etchevers, E. Martin, R. Brown, and et al. Validation of the energy budget of an alpine snowpack simulated by several snow models (snow MIP project). Annals of Glaciology, 38:150–158, 2004.

[61]

C. W. Fairall, E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101(C1):1295–1308, 1996.

[62]

Y. Fan, G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock. Incorporating water table dynamics in climate modeling: 1. water table observations and equilibrium water table simulations. Journal of Geophysical Research, 112(D10125), 2007.

[63]

K. L. Findell, A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello, Jr. Shevliakova, and E. Shevliakova. The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications, 8(989), 2017.

[64]

A. C. Fitch, J. B. Olson, J. K. Lundquist, J. Dudhia, A.K. Gupta, J. Michalakes, and I. Barstad. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Monthly Weather Review, 140(9):3017–3038, 2012.

[65]

S. R. Freitas, G. A. Grell, A. Molod, and et al. Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system. Journal of Advances in Modeling Earth Systems, 10:1266–1289, 2018.

[66]

Saulo R. Freitas, G.A. Grell, and H. Li. The grell-freitas (gf) convection parameterization: recent development, extensions, and applications. Geoscientific Model Development, 14:5393–5411, 2021.

[67]

J. M. Fritsch and C. F. Chappell. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. Journal of the Atmospheric Sciences, 37(8):1722–1733, 1980.

[68]

D. C. Fritts. Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22:275–308, 1984.

[69]

Q. Fu. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9:2058–2082, 1996.

[70]

R. R. Garcia, D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi. Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research: Atmospheres, 112(D9), 2007.

[71]

R. R. Garcia, A. K. Smith, D. E. Kinnison, Á. Cámara, and D. J. Murphy. Modification of the gravity wave parameterization in the whole atmosphere community climate model: Motivation and results. Journal of the Atmospheric Sciences, 74(1):275–291, 2017.

[72]

M. Gehne, T. M. Hamill, G. T. Bates, P. Pegion, and W. Kolczynski. Land surface parameter and state perturbations in the global ensemble forecast system. Monthly Weather Review, 147(4):1319–1340, Apr 2019.

[73]

R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, and et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14):5419–5454, 2017.

[74]

M. A. Geller, M. J. Alexander, P. T. Love, and et al. A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17):6383–6405, 2013.

[75]

G. A. Grell and D. Dévényi. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14):38–1--38–4, Jul 2002.

[76]

G. A. Grell and S. R. Freitas. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14:5233–5250, 2014.

[77]

G. A. Grell. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3):764–787, 2016/03/25 1993.

[78]

Hongping Gu, Jiming Jin, Yihua Wu, Michael B. Ek, and Zachary M. Subin. Calibration and validation of lake surface temperature simulations with the coupled wrf-lake model. Climatic Change, 129(3):471–483, Apr 2015.

[79]

B. P. Guillod, B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 6(6443), 2015.

[80]

J. Han and C. S. Bretherton. TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Weather and Forecasting, accepted, 2019.

[81]

J. Han and H.-L. Pan. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Monthly Weather Review, 134(2):664–674, 2006.

[82]

J. Han and H.-L. Pan. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather and Forecasting, 26(4):520–533, 2016/03/25 2011.

[83]

J. Han, M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton. Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting, 31(1):341–352, Feb 2016.

[84]

J. Han, W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang. Updates in the NCEP GFS cumulus convective schemes with scale and aerosol awareness. Weather and Forecasting, 32:2005–2017, 2017.

[85]

Jongil Han. Updates in the ncep gfs cumulus convection, vertical turbulent mixing, and surface layer physics. 2021.

[86]

Jongil Han. Implementation of a positive definite mass-flux scheme and a method for removing the negative tracers in the ncep gfs planetary boundary layer and cumulus convection schemes. 2022.

[87]

Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek. The community noah-mp land surface modeling system technical description version 5.0. Technical report, 2023.

[88]

M. Hess, P. Koepke, and I. Schult. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteor. Soc., 79:831–844, 1998.

[89]

A. J. Heymsfield and L. J. Donner. A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47(15):1865–1877, 1990.

[90]

A. J. Heymsfield and G. M. McFarquhar. High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53:2424–2451, 1996.

[91]

C. O. Hines. Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part II: Broad and quasi monochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4):387 – 400, 1997.

[92]

A. L. Hirsch, A. J. Pitman, J. Kala, R. Lorenz, and M. G. Donat. Modulation of land-use change impacts on temperature extremes via land-atmosphere coupling over Australia. Earth Interactions, 19(12):1–24, 2015.

[93]

P. V. Hobbs. High concentrations of ice particles in a layer cloud. Nature, 251(5477):694–696, Oct 1974.

[94]

J. R. Holton. The influence of gravity wave breaking on the general circulation of the middle atmosphere. Journal of the Atmospheric Sciences, 40(10):2497–2507, 1983.

[95]

S.-Y. Hong and H.-L. Pan. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10):2322–2339, 1996.

[96]

S-Y. Hong, J. Dudhia, and S.-H. Chen. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132:103–120, 2004.

[97]

Y. Hou, S. Moorthi, and K. Campana. Parameterization of solar radiation transfer. office note 441, NCEP, 2002.

[98]

H. Hsu, M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar. Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122:6319–6328, 2017.

[99]

Y. X. Hu and K. Stamnes. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6:728–742, April 1993.

[100]

M. J. Iacono, E. J. Mlawer, S. A. Clough, and J.-J. Morcrette. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105:14873–14890, 2000.

[101]

M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, 2008.

[102]

D. R. Jackson and R. Saunders. Ozone data assimilation: preliminary system. Forecasting Research Technical Report 394, Met Office, 2002.

[103]

H-L. Jiang, G. Feingold, and A. Sorooshian. Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. Journal of the Atmospheric Sciences, 67(11):3525–3540, Nov 2010.

[104]

Shonk J.K.P., R.J. Hogan, J.M. Edwards, and G.G. Mace. Effect of improving representation of horizontal and vertical cloud structure on the earth's global radiation budget. part i: Review and parametrization. Quarterly Journal of the Royal Meteorological Society, 136(119101204), 2010.

[105]

V. O. John and S. A. Buehler. The impact of ozone lines on AMSU-B radiances. Geophysical Research Letters, 31, 2004.

[106]

Hann-Ming Henry Juang and Song-You Hong. Forward semi-lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Monthly Weather Review, 138(5):1778–1791, may 2010.

[107]

J.R. Key. Streamer user's guide.

[108]

Y.-J. Kim and A. Arakawa. Improvement of orographic gravity wave parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52:1875–1902, 1995.

[109]

Y.-J. Kim and J. D. Doyle. Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Quarterly Journal of the Royal Meteorological Society, 131(609):1893–1991, 2005.

[110]

V. Koren, J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. Baker. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104(D16):19569–19585, 1999.

[111]

R. D. Koster, Y. Chang, and S. D. Schubert. A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27:9290–9301, 2014.

[112]

Ekaterina Kourzeneva, Hermann Asensio, Eric Martin, and Stephanie Faroux. Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus A: Dynamic Meteorology and Oceanography, 64(1):15640, dec 2012.

[113]

G. Krinner, C. Derksen, R. Essery, and et al. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12):5027–5049, Dec 2018.

[114]

S. K. Krueger, Q. Fu, K. N. Liou, and H.-N. S. Chin. Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34:281–287, January 1995.

[115]

David M. Lawrence, Rosie A. Fisher, Charles D. Koven, Keith W. Oleson, Sean C. Swenson, Gordon Bonan, Nathan Collier, Bardan Ghimire, Leo van Kampenhout, Daniel Kennedy, Erik Kluzek, Peter J. Lawrence, Fang Li, Hongyi Li, Danica Lombardozzi, William J. Riley, William J. Sacks, Mingjie Shi, Mariana Vertenstein, William R. Wieder, Chonggang Xu, Ashehad A. Ali, Andrew M. Badger, Gautam Bisht, Michiel van den Broeke, Michael A. Brunke, Sean P. Burns, Jonathan Buzan, Martyn Clark, Anthony Craig, Kyla Dahlin, Beth Drewniak, Joshua B. Fisher, Mark Flanner, Andrew M. Fox, Pierre Gentine, Forrest Hoffman, Gretchen Keppel-Aleks, Ryan Knox, Sanjiv Kumar, Jan Lenaerts, L. Ruby Leung, William H. Lipscomb, Yaqiong Lu, Ashutosh Pandey, Jon D. Pelletier, Justin Perket, James T. Randerson, Daniel M. Ricciuto, Benjamin M. Sanderson, Andrew Slater, Zachary M. Subin, Jinyun Tang, R. Quinn Thomas, Maria Val Martin, and Xubin Zeng. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12):4245–4287, dec

[116]

S.-S. Lee and G. Feingold. Precipitating cloud-system response to aerosol perturbations. Geophysical Research Letters, 37(L23806), 2010.

[117]

X. Li and J. Derber. Near sea surface temperatures (nsst) analysis in ncep gfs.

[118]

X. Li. The development of the nsst within the ncep gfs/cfs.

[119]

K.-S. S. Lim. Investigation of aerosol indirect effects on simulated moist convections.. PhD thesis, Yonsei University, Seoul, South Korea, 2011.

[120]

Y.-L. Lin, R. D. Farley, and H. D. Orville. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22:1065–1092, 1983.

[121]

S-J. Lin, W. C. Chao, Y. C. Sud, and G. K. Walker. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model. Monthly Weather Review, 122:1575–1593, 1994.

[122]

Jialin Lin, Taotao Qian, Peter Bechtold, Georg Grell, Guang J. Zhang, Ping Zhu, Saulo R. Freitas, Hannah Barnes, and Jongil Han. Atmospheric convection. Atmosphere-Ocean, 60(3-4):422–476, jul 2022.

[123]

R. S. Lindzen. Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86:9707–9714, 1981.

[124]

P. J. Long. An general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Office Note 302, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1984.

[125]

P. J. Long. An economical and compatible scheme for parameterizing the stable surface layer in the medium-range forecast model. Office Note 321, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1986.

[126]

S. J. Lord, H. E. Willoughby, and J. M. Piotrowicz. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41(19):2836–2848, October 1984.

[127]

F. Lott and M. J. Miller. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quarterly Journal of the Royal Meteorological Society, 123:101–127, 1997.

[128]

F. Lott, L. Guez, and P. Maury. A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere. Geophysical Research Letters, 39(6), 2012.

[129]

L-F. Luo, A. Robock, K. Y. Vinnikov, and et al. Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia. Journal of Hydrometeorology, 4(2):334–351, Apr 2003.

[130]

Edward R. Mansell and Conrad L. Ziegler. Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. Journal of the Atmospheric Sciences, 70(7):2032–2050, 2013.

[131]

E. R. Mansell, C. L. Ziegler, and E. C. Bruning. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. Journal of the Atmospheric Sciences, 67:171–194, 2010.

[132]

Edward R. Mansell. On sedimentation and advection in multimoment bulk microphysics. Journal of the Atmospheric Sciences, 67:3084–3094, 2010.

[133]

J. P. McCormack, S. D. Eckermann, D. E. Siskind, and T. J. McGee. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6:4943–4972, 2006.

[134]

J. P. McCormack, K. W. Hoppel, and D. E. Siskind. Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation. Atmos. Chem. Phys., 8:7519–7532, 2008.

[135]

G. L. Mellor and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7):1791–1806, Oct 1974.

[136]

G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4):851, 1982.

[137]

Cecile B. Menard, Richard Essery, Gerhard Krinner, Gabriele Arduini, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Emanuel Dutra, Xing Fang, Charles Fierz, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Hyungjun Kim, Matthieu Lafaysse, Thomas Marke, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Gerd Schädler, Vladimir A. Semenov, Tatiana Smirnova, Ulrich Strasser, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan. Scientific and human errors in a snow model intercomparison. Bulletin of the American Meteorological Society, 102(1):E61–E79, Jan 2021.

[138]

G. Miguez-Macho, Y. Fan, C. P. Weaver, R. Walko, and A. Robock. Incorporating water table dynamics in climate modeling: 2. formulation, validation, and soil moisture simulation. Journal of Geophysical Research, 112(D13108), 2007.

[139]

J. Milovac, K. Warrach-Sagi, A. Behrendt, F. Spath, J. Ingwersen, and V. Wulfmeryer. Investigation of PBL schemes combining the WRF model simulations with scanning waver vapor differential absorption lidar measurements. J. Geophys. Res. Atmos., 121:624–649, 2016.

[140]

K. Miyakoda and J. Sirutis. Manual of the E-physics. Princeton University Press, 1986.

[141]

E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough. Radiative transfer for inhomogenerous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(16663-16682), 1997.

[142]

A. Molod, L. Takacs, M. Suarez, and J. Bacmeister. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific Model Development, 8(5):1339–1356, 2015.

[143]

M. Nakanish. Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorology, 99(3):349–378, Jun 2001.

[144]

M. Nakanishi and H. Niino. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorology, 112(1):1–31, Jul 2004.

[145]

M. Nakanishi and H. Niino. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119(2):397–407, Mar 2006.

[146]

M. Nakanishi and H. Niino. Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan, 87(5):895–912, 2009.

[147]

J. W. Nielsen-Gammon, C. L. Powell, M. J. Mahoney, and et al. Multisensor estimation of mixing heights over a coastal city. Journal of Applied Meteorology and Climatology, 47(1):27–43, 2008.

[148]

G.-Y. Niu and Z.-L. Yang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7(5):937–952, 2006.

[149]

Guo-Yue Niu and Zong-Liang Yang. An observation-based formulation of snow cover fraction and its evaluation over large north american river basins. Journal of Geophysical Research, 112(D21), nov 2007.

[150]

G.-Y. Niu, Z.-L Yang, R. E. Dickinson, and L. E. Gulden. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Climate and Dynamics, 110(D21106), 2005.

[151]

G.-Y. Niu, Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su. Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. Journal of Geophysical Research: Atmospheres, 112(D7), 2007.

[152]

G.-Y. Niu, Z.-L. Yang, K. E. Mitchell, and et al. The community noah land surface model with multiparameterization options (Noah-MP): 1. model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres, 116(D12), 2011.

[153]

Keith Oleson, David Lawrence, Gordon Bonan, Beth Drewniak, Maoyi Huang, Charles Koven, Samuel Levis, Fang Li, William Riley, Zachary Subin, Sean Swenson, Peter Thornton, Anil Bozbiyik, Rosie Fisher, Colette Heald, Erik Kluzek, Jean-Francois Lamarque, Peter Lawrence, L Leung, William Lipscomb, Stefan Muszala, Daniel Ricciuto, William Sacks, Ying Sun, Jinyun Tang, and Zong-Liang Yang. Technical description of version 4.5 of the community land model (clm). Technical report, 2013.

[154]

J. B. Olson and J. M. Brown. A comparison of two mellow-yamada-based pbl schemes in simulating a hybrid barrier jet. In 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, number JP1.13, Omaha, Nebraska, 2009. Amer. Meteor. Soc.

[155]

J. B. Olson, Jaymes S. Kenyon, Wayne. A. Angevine, John M. Brown, Mariusz Pagowski, and Kay Suselj. A description of the mynn-edmf scheme and the coupling to other components in wrf–arw. 2019.

[156]

L. Oreopoulos, D. Lee, Y. C. Sud, and M. J. Suarez. Radiative impacts of cloud heterogeneity and overlap in an atmospheric general circulation model. Atmospheric Chemistry and Physics, 12(19):9097–9111, oct 2012.

[157]

D. PaiMazumder and J. M. Done. Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble. J. Geophys. Res. Atmos., 121:12581–12592, 2016.

[158]

H.-L. Pan and W.-S. Wu. Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, page 40pp, 1995.

[159]

C.A. Paulson and J.J. Simpson. The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86(C11):2156–2202, 1981.

[160]

C. D. Peters-Lidard, M. S. Zion, and E. F. Wood. A soil-vegetation-atmosphere transfer sheme for modeling spatially variable water and energy balance processes. J. Geophys. Res., 102(D4):4303–4324, 1997.

[161]

C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55:1209–1224, 1998.

[162]

Y. L. Pichugina, S. C. Tucker, R. M. Banta, and et al. Horizontal-velocity and variance measurements in the stable boundary layer using doppler lidar: Sensitivity to averaging procedures. Journal of Atmospheric and Oceanic Technology, 25(8):1307–1327, 2008.

[163]

R. T. Pierrehumbert. An essay on the parameterization of orographic wave drag. observation, theory, and modelling of orographic effects. In Seminar/Workshop on Observation, Theory and Modelling of Orographic effect. Seminar: 15-19 September 1986, Workshop: 19-20 September 1986, volume 1, pages 251–282. ECMWF, ECMWF, 1986.

[164]

R. Plougonven and F. Zhang. Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics, 52(1):33–76, 2014.

[165]

J. Ramer. An empirical technique for diagnosing precipitation type from model output. In Preprints. Fifth Int. Conf. on Aviation Weather Systems, pages 227–230, Vienna, VA, 1993. Amer. Meteor. Soc.

[166]

C. A. Randles, A. M. da Silva, V. Buchard, and et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30:6823–6850, 2017.

[167]

J. H. Richter, F. Sassi, and R. R. Garcia. Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67(1):136–156, 2010.

[168]

J. H. Richter, A. Solomon, and J. T. Bacmeister. Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. Journal of Advances in Modeling Earth Systems, 6(2):357–383, 2014.

[169]

L. P. Riishojgaard. On four-dimensional variational assimilation of ozone data in weather-prediction models. Quarterly Journal of the Royal Meteorological Society, 122:1545–1571, 1996.

[170]

S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41(20):2949–2972, 1984.

[171]

N. Rutter, R. Essery, J. Pomeroy, and et al. Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 114(D6), Mar 2009.

[172]

He S., T. G. Smirnova, and S. G. Benjamin. Single-column validation of a snow subgrid parameterization in the rapid update cycle land-surface model (ruc lsm). Water Resources Research, 57(8), 2021.

[173]

K. Sakaguchi and X. Zeng. Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the community land model (clm3.5). J. Geophys. Res., 114(D01107), 2009.

[174]

M. Sato, J. E. Hansan, M. P. McCormick, and J. B. Pollack. Stratospheric aerosol optical depth, 1985-1990. J. Geophys. Res., 98(D12):22987–22994, 1993.

[175]

C. A. Schlosser, A. Robock, K. Y. Vinnikov, N. A. Speranskaya, and Y.-K. Xue. 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Monthly Weather Review, 125(12):3279–3296, Dec 1997.

[176]

J. F. Scinocca. An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. Journal of the Atmospheric Sciences, 60(4):667–682, 2003.

[177]

T. A. Shaw and T. G. Shepherd. A theoretical framework for energy and momentum consistency in subgrid-scale parameterization for climate models. Journal of the Atmospheric Sciences, 66(10):3095–3114, 2009.

[178]

A. P. Siebesma, P. M. M. Soares, and J. Teixeira. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64(4):1230–1248, Apr 2007.

[179]

A. G. Slater, C. A. Schlosser, C. E. Desborough, and et al. The representation of snow in land surface schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2(1):7–25, Feb 2001.

[180]

T. G. Smirnova, J. M. Brown, and S. G. Benjamin. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review, 125(8):1870–1884, Aug 1997.

[181]

T. G. Smirnova, J. M. Brown, S. G. Benjamin, and D. Kim. Parameterization of cold-season processes in the MAPS land-surface scheme. Journal of Geophysical Research: Atmospheres, 105(D3):4077–4086, 2000.

[182]

T. G. Smirnova, J. M. Brown, S. G. Benjamin, and J. S. Kenyon. Modifications to the rapid update cycle land surface model (RUC LSM) available in the Weather Research and Forecasting (WRF) model. Monthly Weather Review, 144(5):1851–1865, May 2016.

[183]

A. V. Soloviev and N. V. Vershinsky. The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep Sea Research Part A. Oceanographic Research Papers, 29(12):1437–1449, 1982.

[184]

G.J. Steeneveld, A. A. M. Holtslag, C.J. Nappo, B.J.H. van de Wiel, and L. Mahrt. Exploring the possible role of small-scale terrain drag on stable boundary layers over land. Journal of Applied Meteorology, 47:2518–2530, 2008.

[185]

Matthew Sturm, Jon Holmgren, Max König, and Kim Morris. The thermal conductivity of seasonal snow. Journal of Glaciology, 43(143):26–41, 1997.

[186]

Zachary M. Subin, William J. Riley, and Dmitrii Mironov. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, 4, feb 2012.

[187]

G. Thompson and T. Eidhammer. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of the Atmospheric Sciences, 71(10):3636–3658, Oct 2014.

[188]

G. Thompson, R. M. Rasmussen, and K. Manning. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, 132(2):519–542, Feb 2004.

[189]

G. Thompson, P. R. Field, R. M. Rasmussen, and W. D. Hall. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12):5095–5115, Dec 2008.

[190]

I. B. Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2):129–148, 1986.

[191]

A. Tsiringakis, G. J. Steeneveld, and A. A. M. Holtslag. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near-surface meteorology. Quarterly Journal of the Royal Meteorological Society, 143:1504–1516, 2017.

[192]

A. Untch, A. J. Simmons, M. Hortal, and C. Jakob. Increased stratospheric resolution in the ECMWF forecasting system. In Proceedings of the SODA Workshop, pages 45–52. Netherlands, 1999.

[193]

D. Vickers and L. Mahrt. Evaluating formulations of stable boundary layer height. Journal of Applied Meteorology, 43(11):1736–1749, Nov 2004.

[194]

J. Weinstock. Simplified derivation of an algorithm for nonlinear gravity waves. Journal of Geophysical Research: Space Physics, 89(A1):345–350, 1984.

[195]

M. Winton. A reformulated three-layer sea ice model. J. Atmos. Oceanic Tech., 17:525–531, 2000.

[196]

World Meteorological Organization. WMO greenhouse gas bulletin, number 13, October 2017 2017.

[197]

International Snow Science Workshop, editor. Snow MIP, and intercomparson of snow-cover models: first results, Victoria, B.C., 29 September-4 October 2002. B.C. Ministry of Transportation. Snow Avalance Programs, In Stevens, J.R.

[198]

K.-M. Xu and D. A. Randall. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21):3084, 3102 1996.

[199]

V. A. Yudin, R. A. Akmaev, T. J. Fuller-Rowell, and J. C. Alpert. Gravity wave physics in the NOAA environmental modeling system. In International SPARC Gravity Wave Symposium, volume 48, page 012024, 2016.

[200]

V. A. Yudin, R. A. Akmaev, J. C. Alpert, Fuller-Rowell T. J., and Karol S. I. Gravity wave physics and dynamics in the FV3-based atmosphere models extended into the mesosphere. In Am. Meteorol. Soc., editor, 25th Conference on Numerical Weather Prediction, 2018.

[201]

V. A. Yudin, S. I. Karol, R. A. Akmaev, and et al. Longitudinal variability of wave dynamics in weather models extended into the mesosphere and thermosphere. In Space Weather Workshop, 2019.

[202]

X. Zeng and A. Beljaars. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophysical Research Letters, 32(14):1–4, 2005.

[203]

X. Zeng and R. E. Dickinson. Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11:537–550, 1998.

[204]

X. Zeng, M. Zhao, and R. E. Dickinson. Intercomparison of bulk aerodynamic algorithm for the comutation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11:2628–2644, 1998.

[205]

G. J. Zhang and X. Q. Wu. Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. Journal of the Atmospheric Sciences, 60(9):1120–1139, 2003.

[206]

W. Zheng, H. Wei, Z. Wang, X. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber. Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res., 117(D06117), 2012.

[207]

W. Zheng, M. Ek, K. Mitchell, H. Wei, and J. Meng. Improving the stable surface layer in the NCEP Global Forecast System. Monthly Weather Review, 145:3969–3987, 2017.

[208]

L.-J. Zhou, S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees. Toward convective-scale prediction within the next generation global prediction system. Bulletin of the American Meteorological Society, pages 1225–1243, 2019.