Radiation Scheme in CCPP
Radiation scheme in CCPP

Introduction

Radiative process is one of the most complex and computational intensive part of all model physics. As an essential part of model physics, it directly and indirectly connects all physics processes with model dynamics, and regulates the overall earth-atmosphere energy exchanges and transformations. The radiation package in NEMS physics has standardized component modules. The schematic radiation module structure is shown in table 1.

schematic_Rad_mod.png

Radiation parameterizations are intended to provide a fast and accurate method of determined the total radiative flux at any given location. These calculations provide both the total radiative flux at the ground surface, which is needed for the surface energy budget, and the vertical radiative flux divergence, which is used to calculate the radiative heating and cooling rates of a given atmospheric volume. The magnitude of the terms in the surface energy budget can set the stage for moist deep convection and are crucial to the formation of low-level clouds. In addition, the vertical radiative flux divergence can produce substantial cooling, particularly at the tops of clouds, which can have strong dynamic effect on cloud evolution.

Radiation Scheme Modules

The following links take you to more information about each module.

References

Barker, H. W., et al., 2003: Assessing 1D atmospheric solar radiative transfer models: interpretation and handling of unresolved clouds. J. Clim., 16, 2676-2699.

Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97, 7603-7612.

Briegleb, B. P., P. Minnus, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedo inferred from satellite observations and model computations. J. Clim. and Appl. Meteo., 25, 214-226.

Chin, M., R. B. Rood, S-J. Lin, J-F. Mller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24671-24687.

Chou, M. D., M. J. Suarez, C. H. Ho, M. M. H. Yan, and K. T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models. J. Clim., 11, 202-214.

Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res.100, 16519-16535.

Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244.

Coakley, J. A., R. D. Cess, and F. B. Yurevich, 1983: The effect of tropospheric aerosols on the earth's radiation budget: a parameterization for climate models. J. Atmos. Sci., 42, 1408-1429.

Fels, S. B., and M.D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 337, 2265-2297.

Frohlich, C. and G. E. Shaw, 1980: New determination of Rayleigh scattering in the terrestrial atmosphere. Appl. Opt., 14, 1773-1775.

Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim., 9, 2058-2082.

Fu, Q., P. Yang, and W.B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Clim., 11, 2223-2237.

Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteor. Soc., 79, 831-844.

Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool. J. Atmos. Sci., 53, 2424-2451.

Hou, Y-T., S. Moorthi, K. Campana, 2002: Parameterization of solar radiation transfer in the NCEP Models. NCEP Office Note 441, 46pp.

Hu, Y. X., and K. Stamnes. 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Clim., 6, 728-742.

Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model CCM3. J. Clim., 11, 1131-1149.

Matthews, E., 1985: Atlas of Archived Vegetation, Land Use, and Seasonal Albedo Data Sets., NASA Technical Memorandum 86199, Goddard Institute for Space Studies, New York.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogenerous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682.

Oreopoulos, L. and Barker, H. W., 1999: Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Q. J. R. Meteorol. Soc., 125, 301-330.

Pincus, R., Barker, H. W. and Morcrette, J.-J., 2003: A fast, flexible, approximate technique of computing radiative transfer for inhomogeneous clouds. J. Geophys. Res., 108, 4376, doi: 10.1029/2002JD003322.

Roberts, R. E., J. A. Selby, and L. M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics., 15, 2085-2090.

Rodgers, C.D., 1968: Some extension and applications of the new random model for molecular band transmission. Quart. J. Roy. Meteor. Soc., 94,99-102.

Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depth, 1850-1990. J. Geophys. Res., 98, 22987-22994.

Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties pf water clouds. J. Atmos. Sci., 46, 1419-1427.

Schwarzkopf, M.D., and S. B. Fels, 1985: Improvements to the algorithm for computing CO2 transmissivities and cooling rates. J. Geophys. Res., 90, 10541-10550.

Schwarzkopf, M.D., and S. B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 9075-9096.

Staylor, W. F. and A. C. Wilbur, 1990: Global surface albedos estimated from ERBE data. Preprints of the Seventh Conference on Atmospheric Radiation, San Francisco CA, American Meteorological Society, 231-236.

Stephens, G. L., 1984: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826-867.

Zdunkowski, W. G., Welsch, R. M., and Korb, G. J., 1980: An investigation of the structure of typical 2-stream methods for the calculation of solar fluxes and heating rates in clouds. Contrib. Atms. Phys., 53, 215-238.