GFS Operational Physics Documentation  Revision: 81451
Bibliography
[1]

J. Alpert, M. Kanamitsu, P.M. Caplan, J.G. Sela, G. H. White, and E. Kalnay. Mountain induced gravity wave drag parameterization in the nmc medium-range forecast model. pages 726–733, Baltimore, MD, 1988. Eighth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc.

[2]

A Arakawa and WH Schubert. Interaction of a cumulus cloud ensemble with the large-scale environment, uppercase Part uppercase I. Journal of the Atmospheric Sciences, 31:674–701, 1974.

[3]

P. G. Baines and T. N. Palmer. Rationale for a new physically based parametrization of sub-grid scale orographic effects. Technical Memorandum 169, European Centre for Medium Range Weather Forecasts, 1990.

[4]

Peter Bechtold, Martin Köhler, Thomas Jung, Francisco Doblas-Reyes, Martin Leutbecher, Mark J. Rodwell, Frederic Vitart, and Gianpaolo Balsamo. Advances in simulating atmospheric variability with the ecmwf model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634):1337–1351, 2008.

[5]

B.P. Briegleb. Delta-eddington approximation for solar radiation in the ncar community climate model. J. Geophys. Res., 97:7603–7612, 1992.

[6]

JA Businger, JC Wyngaard, Y Izumi, and EF Bradley. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28:181–&, 1971.

[7]

M. Chin, R. B. Rood, S-J. Lin, J-F. Muller, and A. M. Thompson. Atmospheric sulfur cycle simulated in the global model gocart: Model description and global properties. J. Geophys. Res., 105(D20):24671–24687, October 2000.

[8]

H.-Y. Chun and J.-J. Baik. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55:3299–3310, 1998.

[9]

H.-Y. Chun, M.-D. Song, J.-W. Kim, and J.-J. Baik. Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58:302–319, 2001.

[10]

H.-Y. Chun, I.-S. Song, J.-J. Baik, and Y.-J. Kim. Impact of a convectively forced gravity wave drag parameterization in ncar ccm3. J. Climate, 17:3530–3547, 2004.

[11]

S. A. Clough, M. J. Iacono, and J. L. Moncet. Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97(D14):15761–15785, October 1992.

[12]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J.S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown. Atmospheric radiative transfer modeling: A summary of the aer codes. J. Quant. Spectrosc. Radiat. Transfer, 91:233–244, 2005.

[13]

E.E. Ebert and J.A. Curry. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97:3831–3836, 1992.

[14]

J. M. Fritsch and C. F. Chappell. Numerical prediction of convectively driven mesoscale pressure systems. part i: Convective parameterization. Journal of the Atmospheric Sciences, 37(8):1722–1733, 1980.

[15]

D. C. Fritts. Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22:275–308, 1984.

[16]

Q. Fu, P. Yang, and W. B. Sun. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11:2223–2237, 1998.

[17]

Q. Fu. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9:2058–2082, 1996.

[18]

A. L. M. Grant. Cloud-base fluxes in the cumulus-capped boundary layer. Quarterly Journal of the Royal Meteorological Society, 127(572):407–421, 2001.

[19]

Georg A. Grell. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3):764–787, 2016/03/25 1993.

[20]

Jongil Han and Hua-Lu Pan. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Monthly Weather Review, 134(2):664–674, 2006.

[21]

Jongil Han and Hua-Lu Pan. Revision of convection and vertical diffusion schemes in the ncep global forecast system. Weather and Forecasting, 26(4):520–533, 2016/03/25 2011.

[22]

Jongil Han, Marcin L. Witek, Joao Teixeira, Ruiyu Sun, Hua-Lu Pan, Jennifer K. Fletcher, and Christopher S. Bretherton. Implementation in the ncep gfs of a hybrid eddy-diffusivity mass-flux (edmf) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting, 2015.

[23]

Harshvardhan, D. A. Randall, T. G. Corsetti, and D. A. Dazlich. Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46(13):1922–1942, 1989.

[24]

M. Hess, P. Koepke, and I. Schult. Optical properties of aerosols and clouds: The software package opac. Bull. Am. Meteor. Soc., 79:831–844, 1998.

[25]

A.J. Heymsfield and G. M. McFarquhar. High albedos of cirrus in the tropical pacific warm pool: Microphysical interpretations from cepex and from kwajalein, marshall islands. J. Atmos. Sci., 53:2424–2451, 1996.

[26]

Song-You Hong and Hua-Lu Pan. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10):2322–2339, 1996.

[27]

Y. Hou, S. Moorthi, and K. Campana. Parameterization of solar radiation transfer. office note 441, NCEP, 2002.

[28]

Y.X. Hu and K. Stamnes. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6:728–742, April 1993.

[29]

M.J. Iacono, E.J. Mlawer, S. A. Clough, and J.-J. Morcrette. Impact of an improved longwave radiation model, rrtm, on the energy budget and thermodynamic properties of the ncar community climate model, ccm3. J. Geophys. Res., 105:14873–14890, 2000.

[30]

M.J. Iacono, J.S. Delamere, E.J. Mlawer, M. W. Shephard, S. A. Clough, and W.D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer models. J. Geophys. Res., 113, 2008.

[31]

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. The delta-eddington approximation for radiative flux transfer. Journal of the Atmospheric Sciences, 33:2452–2459, 1976.

[32]

E. Kessler. On the distribution and continuity of water substance in atmospheric circulations. Amer. Meteor. Soc., 1969.

[33]

J. Key. Streamer user's guide. Technical Report 96pp, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, 2001.

[34]

Y.-J. KIM and A. Arakawa. Improvement of orographic gravity wave parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52:1875–1902, 1995.

[35]

Y.-L. Lin, R. D. Farley, and H. D. Orville. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22:1065–1092, 1983.

[36]

R. S. Lindzen. Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86:9707–9714, 1981.

[37]

K. N. Liou. A numerical experiment on chandrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. Journal of the Atmospheric Sciences, 30:1303–1326, 1973.

[38]

AP Lock, AR Brown, MR Bush, GM Martin, and RNB Smith. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128:3187–3199, 2000.

[39]

F. Lott and M. J. Miller. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quarterly Journal of the Royal Meteorological Society, 123:101–127, 1997.

[40]

JF Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17:187–202, 1979.

[41]

M. K. MacVean and P. J. Mason. Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. Journal of the Atmospheric Sciences, 47(8):1012–1030, 1990.

[42]

J. P. McCormack, S. D. Eckermann, D. E. Siskind, and T. J. McGee. Chem2d-opp: A new linearized gas-phase ozone photochemistry parameterization for high-altitude nwp and climate models. Atmos. Chem. Phys., 6:4943–4972, 2006.

[43]

E.J. Mlawer, S.J. Taubman, P.D. Brown, M. J. Iacono, and S. A. Clough. Radiative transfer for inhomogenerous atmospheres: Rrtm, a validated correlated-k model for the longwave. J. Geophys. Res., 102(16663-16682), 1997.

[44]

T. N. Palmer, G. J. Shutts, and R. Swinbank. Alleviation of a systematic westerly bias in circulation and numerical weather prediction model through an orographic gravity wave drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112:1001–1039, 1986.

[45]

H. L. Pan and W.-S. Wu. Implementing a mass flux convection parameterization package for the nmc medium-range forecast model. NMC Office Note, No. 409, page 40pp, 1995.

[46]

R. T. Pierrehumbert. An essay on the parameterization of orographic wave drag. observation, theory, and modelling of orographic effects, 1986.

[47]

R. R. Rogers. A short course in cloud physics, 1979.

[48]

M. Sato, J.E. Hansan, M. P. McCormick, and J. B. Pollack. Stratospheric aerosol optical depth, 1985-1990. J. Geophys. Res., 98(D12):22987–22994, December 1993.

[49]

A. Pier Siebesma, Pedro M. M. Soares, and Joao Teixeira. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64:1230–1248, 2007.

[50]

P. M. M. Soares, P. M. A. Miranda, A. P. Siebesma, and J. Teixeira. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quarterly Journal of the Royal Meteorological Society, 130(604):3365–3383, 2004.

[51]

H. Sundqvist, E. Berge, and J.E. Kristjansson. Condensation and cloud studies with a mesoscale numerical weather prediction model. Monthly Weather Review, 117:1641–1657, 1989.

[52]

H. Sundqvist. Physically-based modeling and simulation of climate and climatic changes, Part I, chapter Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation, pages 433–461. M. E. Schlesinger, Ed., Reidel, 1988.

[53]

IB Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2):129–148, 1986.

[54]

K-M. Xu and D. A. Randall. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21):3084, 3102 1996.

[55]

F. Yang, K. Mitchell, Y. Hou, Y. Dai, X. Zeng, Z. Wang, and X. Liang. Dependence of land surface albedo on solar zenith angle: Observations and model parameterizations. Journal of Applied Meteorology and Climatology, 47(11):2963–2982, 2008.

[56]

W. G. Zdunkowski, R. M. Welch, and G. Korb. An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Beitr. Phys. Atmos., 53:147–166, 1980.

[57]

Guang J. Zhang and Xiaoqing Wu. Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. Journal of the Atmospheric Sciences, 60(9):1120–1139, 2003.

[58]

Q. Zhao and F.H. Carr. A prognostic cloud scheme for operational nwp models. Monthly Weather Review, 125:1931–1953, 1997.