
Common Community Physics Package
Single Column Model (SCM)

User and Technical Guide
v4.0

March 2020
Grant Firl, Laurie Carson, Michelle Harrold

National Center for Atmospheric Research and Developmental Testbed Center

Ligia Bernardet
NOAA/ESRL Global Systems Laboratory and Developmental Testbed Center

Dom Heinzeller
NOAA/ESRL Global Systems Laboratory, Developmental Testbed Center and CIRES/CU

Acknowledgement

If significant help was provided via the helpdesk for work resulting in a publication,
please acknowledge the Developmental Testbed Center team.

For referencing this document please use:

Firl, G., L. Carson, L. Bernardet, D. Heinzeller, and M. Harrold, 2020. Common
Community Physics Package Single Column Model v4.0 User and Technical Guide.
38pp. Available at https://dtcenter.org/GMTB/v4.0/scm-ccpp-guide-v4.pdf

Contents

Preface v

1 Introduction 1
1.1 Version Notes . 1

1.1.1 Limitations . 2

2 Quick Start Guide 3
2.1 Obtaining Code . 3

2.1.1 Release Code . 3
2.1.2 Development Code . 4

2.2 System Requirements, Libraries, and Tools 4
2.2.1 Compilers . 5
2.2.2 Installing Libraries on Supported Platforms 6
2.2.3 Using Existing Libraries on Preconfigured Platforms 7

2.3 Compiling SCM with CCPP . 8
2.4 Run the SCM with a supplied case . 9

2.4.1 Single Run Script Usage . 10
2.4.2 Multiple Run Script Usage . 11
2.4.3 Batch Run Script . 12

2.5 Creating and Using a Docker Container with SCM and CCPP 12
2.5.1 Building the Docker image . 13
2.5.2 Using a prebuilt Docker image from Dockerhub 14
2.5.3 Running the Docker image . 14

3 Repository 16
3.1 What is included in the repository? . 16

4 Algorithm 18
4.1 Algorithm Overview . 18
4.2 Reading input . 18
4.3 Setting up vertical grid and interpolating input data 19
4.4 Physics suite initialization . 19
4.5 Time integration . 20
4.6 Writing output . 20

5 Cases 22
5.1 How to run cases . 22

5.1.1 Case configuration namelist parameters 22
5.1.2 Case input data file . 24

5.2 Included Cases . 26

iii

Contents

5.3 How to set up new cases . 27
5.4 Using other LASSO cases . 29
5.5 Using UFS Initial Conditions . 29

6 CCPP Interface 32
6.1 Setting up a suite . 32

6.1.1 Preparing data from the SCM . 32
6.1.2 Editing and running ccpp_prebuild.py 33
6.1.3 Preparing a suite definition file 33

6.2 Initializing/running a suite . 34
6.3 Changing a suite . 34

6.3.1 Replacing a scheme with another 34
6.3.2 Modifying “groups” of parameterizations 35
6.3.3 Subcycling parameterizations . 35

6.4 Adding variables . 35
6.4.1 Adding a physics-only variable . 35
6.4.2 Adding a prognostic SCM variable 37

iv

Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

v

1 Introduction

A single column model (SCM) can be a valuable tool for diagnosing the performance of a
physics suite, from validating that schemes have been integrated into a suite correctly to
deep dives into how physical processes are being represented by the approximating code.
This SCM has the advantage of working with the Common Community Physics Package
(CCPP), a library of physical parameterizations for atmospheric numerical models and
the associated framework for connecting potentially any atmospheric model to physics
suites constructed from its member parameterizations. In fact, this SCM serves as per-
haps the simplest example for using the CCPP and its framework in an atmospheric
model. This version contains all parameterizations of NOAA’s evolved operational GFS
v15.2 suite (implemented in 2019), plus additional developmental schemes. The schemes
are grouped in four supported suites described in detail in the CCPP Scientific Docu-
mentation (GFS_v15p2, GFS_v16beta, csawmg, and GSD_v1). Two additional suites
without the near sea surface temperature scheme are available to match the first Unified
Forecast System (UFS) public release.

This document serves as both the User and Technical Guides for this model. It contains
a Quick Start Guide with instructions for obtaining the code, compiling, and running
a sample test case, an explanation for what is included in the repository, a brief de-
scription of the operation of the model, a description of how cases are set up and run,
and finally, an explanation for how the model interfaces with physics through the CCPP
infrastructure.

Please refer to the release web page for further documentation and user notes:
https://dtcenter.org/community-code/common-community-physics-package-ccpp/
download

1.1 Version Notes

The CCPP SCM v4.0 contains the following major and minor changes since v3.0.

Major

• Codebase updated to work with latest ccpp-framework (v4.0) and ccpp-physics
(v4.0), allowing use of 6 supported physics suites

• Support added for NOAA’s Hera HPC platform and Docker containers
• Support added for CCPP’s “static” build. This release no longer supports the

“dynamic” build.
1

https://dtcenter.org/GMTB/v4.0/sci_doc/
https://dtcenter.org/GMTB/v4.0/sci_doc/
https://dtcenter.org/community-code/common-community-physics-package-ccpp/download
https://dtcenter.org/community-code/common-community-physics-package-ccpp/download

1 Introduction

• Added capability to utilize UFS initial conditions and initialize the Noah LSM
(without advective forcing)

Minor

• Integrated CCPP code generation with the CMake step
• Adopted the new CCPP metadata format
• Name change: this code is now known as the CCPP SCM instead of the “GMTB”

SCM, although filenames in the code have not been changed yet.

1.1.1 Limitations

This release bundle has some known limitations:

• The provided cases over land points cannot use an LSM at this time due to the
lack of initialization data for the LSMs. Therefore, for the provided cases over land
points (ARM_SGP_summer_1997_* and LASSO_*, where sfc_type = 1 is set
in the case configuration file), prescribed surface fluxes must be used:
– surface sensible and latent heat fluxes must be provided in the case data file
– sfc_flux_spec must be set to true in the case configuration file
– the surface roughness length in cm must be set in the case configuration file
– the suite defintion file used (physics_suite variable in the case configuration

file) must have been modified to use prescribed surface fluxes rather than an
LSM.

– NOTE: If one can develop appropriate initial conditions for the LSMs for the
supplied cases over land points, there should be no technical reason why they
cannot be used with LSMs, however.

• As of this release, using the SCM over a land point with an LSM is possible through
the use of UFS initial conditions (see section 5.5). However, advective forcing terms
are unavailable as of this release, so only short integrations using this configuration
should be employed. Using dynamical tendencies (advective forcing terms) from
the UFS will be part of a future release.

• There are several capabilities of the developmental code that have not been tested
sufficiently to be considered part of the supported release. Those include additional
parameterizations, such as the Noah Multi-Parameterization (Noah-MP) scheme.
User that want to use experimental capabilities should refer to Subsection 2.1.2.

2

2 Quick Start Guide

This chapter provides instructions for obtaining and compiling the CCPP SCM. The
SCM code calls CCPP-compliant physics schemes through the CCPP framework code.
As such, it requires the CCPP framework code and physics code, both of which are
included as submodules within the SCM code. This package can be considered a simple
example for an atmospheric model to interact with physics through the CCPP.

Alternatively, if one doesn’t have access or care to set up a machine with the appropriate
system requirements but has a working Docker installation, it is possible to create and
use a Docker container with a pre-configured computing environment with a pre-compiled
model. This is also an avenue for running this software with a Windows PC. See section
2.5 for more information.

2.1 Obtaining Code

The source code for the CCPP and SCM is provided through GitHub.com. This release
branch contains the tested and supported version for general use, while a development
branch is less stable, yet contains the latest developer code. Instructions for using either
option are discussed here.

2.1.1 Release Code

Clone the source using
git clone --recursive -b v4.0.0 https :// github.com/NCAR/gmtb -scm

Recall that the recursive option in this command clones the main gmtb-scm repository
and all subrepositories (ccpp-physics and ccpp-framework). Using this option, there is
no need to execute git submodule init and git submodule update.

The CCPP framework can be found in the ccpp/framework subdirectory at this level.
The CCPP physics parameterizations can be found in the ccpp/physics subdirectory.

3

2 Quick Start Guide

2.1.2 Development Code

If you would like to contribute as a developer to this project, please see (in addition to the
rest of this guide) the scientific and technical documentation included with this release:

https://dtcenter.org/community-code/common-community-physics-package-ccpp/
documentation

There you will find links to all of the documentation pertinent to developers.

For working with the development branches (stability not guaranteed), check out the
dtc/develop branches of the repository (and submodules):
git clone --recursive -b dtc/develop https :// github.com/NCAR/gmtb -scm

You may want to double-check that the dtc/develop branch of the SCM is pointing to the
latest commits of the dtc/develop branches of ccpp-physics and ccpp-framework. While
we update the submodule pointers often, it is occasionally forgotten. To ensure that you
have the latest development code for the submodules, execute the following:

1. Navigate to the ccpp-physics directory.
cd gmtb -scm/ccpp/physics

2. Check out the right branch (cloning recursively as instructed above creates a “de-
tached head” state for the submodules by default).
git checkout dtc/develop

3. Pull down the latest changes just to be sure.
git pull

4. Do the same for ccpp-framework
cd ../ framework
git checkout dtc/develop
git pull

5. Change back to the main directory for following the instructions in section 2.3
assuming system requirements in section 2.2 are met.
cd ../..

2.2 System Requirements, Libraries, and Tools

The source code for the SCM and CCPP component is in the form of programs written in
FORTRAN, FORTRAN 90, and C. In addition, the I/O relies on the netCDF libraries.
Beyond the standard scripts, the build system relies on use of the Python scripting
language, along with cmake, GNU make and date.

4

https://dtcenter.org/community-code/common-community-physics-package-ccpp/documentation
https://dtcenter.org/community-code/common-community-physics-package-ccpp/documentation

2 Quick Start Guide

The basic requirements for building and running the CCPP and SCM bundle are listed
below. The versions listed reflect successful tests and there is no guarantee that the code
will work with different versions.

• FORTRAN 90+ compiler
– ifort 18.0.5.274, 19.0.2 and 19.0.5
– gfortran 6.2, 8.3, and 9.2

• C compiler
– icc 18.0.5.274, 19.0.2 and 19.0.5
– gcc 6.2, 8.3, and 9.2
– Apple clang 11.0.0.11000033, LLVM clang 9.0.0

• cmake 2.8.12.1, 2.8.12.2, 3.6.2, 3.16.3, 3.16.4
– NOTE: Version 3.15+ is required if installing NCEPLIBS

• netCDF 4.3.0, 4.4.0, 4.4.1.1, 4.5.0, 4.6.1, 4.6.3, 4.7.0, 4.7.3 (not 3.x) with HDF5
and ZLIB

• Python 2.7.5, 2.7.9, 2.7.13, and 2.7.16 (not 3.x) with f90nml module (and Shapely
if using the UFS_IC_generator.py script)

Because these tools and libraries are typically the purview of system administrators to
install and maintain, they are considered part of the basic system requirements. The
Unified Forecast System (UFS) Medium-Range Weather Application release v1.0.0 of
March 11, 2020, provides software packages and detailed instructions to install these
prerequisites and the NCEPlibs on supported platforms (see section 2.2.2).

Further, there are several utility libraries as part of the NCEPlibs package that must
be installed with environment variables pointing to their locations prior to building the
SCM.

• bacio - Binary I/O Library
• sp - Spectral Transformation Library
• w3nco - GRIB decoder and encoder library

The following environment variables are used by the build system to properly link these
libraries: BACIO_LIB4, SP_LIBd, and W3NCO_LIBd. Computational platforms in which the
NCEPLIBS are prebuilt and installed in a central location are referred to as preconfig-
ured platforms. Examples of preconfigured platforms are most NOAA high-performance
computing machines (using the Intel compiler) and the NCAR Cheyenne system (using
the Intel and GNU compilers). The machine setup scripts mentioned in section 2.3 load
these libraries (which are identical to those used by the UFS Medium Range Weather
Application on those machines) and set these environment variables for the user automat-
ically. For installing the libraries and its prerequisites on supported platforms, existing
UFS packages can be used (see section 2.2.2).

5

2 Quick Start Guide

2.2.1 Compilers

The CCPP and SCM have been tested on a variety of computing platforms. Cur-
rently the CCPP system is actively supported on Linux and MacOS computing plat-
forms using the Intel or GNU Fortran compilers. Please use versions listed in
the previous section as unforeseen build issues may occur when using older com-
piler versions. Typically the best results come from using the most recent ver-
sion of a compiler. If you have problems with compilers, please check the “Known
Issues” section of the release website (https://dtcenter.org/community-code/
common-community-physics-package-ccpp/download).

2.2.2 Installing Libraries on Supported Platforms

For users on supported platforms such as generic Linux or macOS systems, the UFS
Medium-Range Weather Application v1.0.0 release provides software packages and
detailed setup instructions at https://github.com/NOAA-EMC/NCEPLIBS-external/
tree/ufs-v1.0.0 and https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.0.0.
UFS users who already installed the NCEPLIBS package only need to set the com-
piler environment variables as indicated in the relevant README_*.txt file in https:
//github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc/ and source the
shell script that is created by the NCEPLIBS install process to set the required environment
variables for compiling the SCM.

The SCM uses only a small part of the UFS NCEPLIBS package and has fewer prereq-
uisites (i.e. no ESMF or wgrib2 needed). Users who are not planning to use the UFS
can follow the machine setup instructions in the relevant README*.txt files in https:
//github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc and, instead of
installing NCEPLIBS-external and NCEPLIBS, install only NetCDF/NetCDF-Fortran man-
ually or using the software package manager (apt, yum, brew).

Note. On macOS systems, it may be necessary to add the (future) location of the
NetCDF libraries libnetcdf.dylib and libnetcdff.dylib to the rpath linker flags be-
fore compiling the NetCDF/NetCDF-Fortran libraries. Execute the following command
before running configure and make for netcdf-c and netcdf-fortran:
export LDFLAGS="-L/dir/where/libnetcdf/and/libnetcdff/live -Wl,-rpath ,/

dir/where/libnetcdf/and/libnetcdff/live"

Users need to set the compiler enviroment variables CC, CXX, FC and the environment
variable NETCDF for compiling the three NCEP libraries (instead of the NCEPLIBS umbrella
build referred to in the NCEPLIBS-external instructions) and the SCM.

Installing the NCEP libraries: The SCM repository contains a bash installation script in
gmtb-scm/contrib/build_nceplibs.sh that will fetch the source code of the three required
NCEP libraries from their authoritative repositories on GitHub and install them locally

6

https://dtcenter.org/community-code/common-community-physics-package-ccpp/download
https://dtcenter.org/community-code/common-community-physics-package-ccpp/download
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0
https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.0.0
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc/
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc/
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0/doc

2 Quick Start Guide

for the SCM to use. To execute this script, perform the following step from the top level
directory (gmtb-scm).
./ contrib/build_nceplibs.sh /path/to/nceplibs

Following successful execution of this script, the commands to set the proper environment
variables mentioned above will be written to the terminal as output. One must execute
the correct set for the active shell to finish the installation, e.g., for bash
export BACIO_LIB4 =/path/to/nceplibs/lib/libbacio_v2 .2.0_4.a
export SP_LIBd =/path/to/nceplibs/lib/libsp_v2 .1.0_d.a
export W3NCO_LIBd =/path/to/nceplibs/lib/libw3nco_v2 .1.0_d.a

and for t/csh
setenv BACIO_LIB4 /path/to/nceplibs/lib/libbacio_v2 .2.0_4.a
setenv SP_LIBd /path/to/nceplibs/lib/libsp_v2 .1.0_d.a
setenv W3NCO_LIBd /path/to/nceplibs/lib/libw3nco_v2 .1.0_d.a

The installation of NCEPLIBS requires cmake v3.15+. There are many ways to obtain
the required version, either by following instructions provided by cmake (https://cmake.
org/install/), or by following the instructions provided for the UFS Medium-Range
Weather Application release (https://github.com/NOAA-EMC/NCEPLIBS-external/
tree/ufs-v1.0.0). Prepend this installation directory of cmake to your path environ-
ment variable to use it for building the NCEPLIBS.

The Python environment must provide the f90nmlmodule for the SCM scripts to function.
Users can test if f90nml is installed using this command in the shell:
python -c "import f90nml"

If f90nml is installed, this command will succeed silently, otherwise an ImportError: No
module named f90nml will be printed to screen. To install the f90nml (v0.19) Python
module, use the install method preferred for your Python environment (one of the fol-
lowing):

• easy_install f90nml ==0.19

• pip install f90nml ==0.19

• conda install f90nml =0.19

or perform the following steps to install it manually from source:
cd /directory/with/write/priveleges
git clone -b v0.19 https :// github.com/marshallward/f90nml
cd f90nml
python setup.py install [--prefix =/my/install/directory or --user]

7

https://cmake.org/install/
https://cmake.org/install/
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0

2 Quick Start Guide

The directory /my/install/directory must exist and its subdirectory
/my/install/directory/lib/python2.7/site-packages (or lib64 instead of lib,
depending on the system) must be in the PYTHONPATH environment variable.

2.2.3 Using Existing Libraries on Preconfigured Platforms

Platform-specific scripts are provided to load modules and set the user environment for
preconfigured platforms. These scripts load compiler modules (Fortran 2003-compliant),
the netCDF module, Python environment, etc. and set compiler and NCEPlibs envi-
ronment variables. From the top-level code directory (gmtb-scm by default), source the
correct script for your platform and shell. For t/csh shells,
source scm/etc/Hera_setup_intel.csh
source scm/etc/Cheyenne_setup_gnu.csh
source scm/etc/Cheyenne_setup_intel.csh

For bourne/bash shells,
. scm/etc/Hera_setup_intel.sh
. scm/etc/Cheyenne_setup_gnu.sh
. scm/etc/Cheyenne_setup_intel.sh

2.3 Compiling SCM with CCPP

The first step in compiling the CCPP and SCM is to properly setup your user environment
as described in sections 2.2.2 and 2.2.3. The second step is to download the lookup tables
(large binaries, 324MB) for the Thompson microphysics package and place them in the
correct directory: From the top-level code directory (gmtb-scm by default), execute the
following script:
./ contrib/get_thompson_tables.sh

If the download step fails, make sure that your system’s firewall does not block ac-
cess to GitHub. If it does, download the file thompson_tables.tar from the GitHub
release website using your browser and manually extract its contents in the directory
scm/data/physics_input_data/.

Following this step, the top level build system will use cmake to query system parameters,
execute the CCPP prebuild script to match the physics variables (between what the
host model – SCM – can provide and what is needed by physics schemes in the CCPP),
and build the physics caps needed to use them. Finally, make is used to compile the
components.

1. From the top-level code directory (gmtb-scm by default), change directory to the
top-level SCM directory.

8

2 Quick Start Guide

cd scm

2. Make a build directory and change into it.
mkdir bin && cd bin

3. Invoke cmake on the source code to build using one of the options below.
• Default mode

cmake ../src

• The statements above can be modified with the following options (put before
../src):
– Use threading with openmp (not for macOS with clang+gfortran)

-DOPENMP=ON

– Debug mode
-DCMAKE_BUILD_TYPE=Debug

CMake automatically runs the CCPP prebuild script to match required physics
variables with those available from the dycore (SCM) and to generate physics caps
and makefile segments. It generates software caps for each physics group defined
in the supplied Suite Definition Files (SDFs) and generates a static library that be-
comes part of the SCM executable. Appropriate software caps will be generated
for all suites defined in the gmtb-scm/ccpp/suites directory automatically.
If necessary, the CCPP prebuild script can be executed manually from the top level
directory (gmtb-scm). The basic syntax is
./ccpp/framework/scripts/ccpp_prebuild.py --config =./ ccpp/config/

ccpp_prebuild_config.py --static --suites=SCM_GFS_v15p2 ,
SCM_GFS_v16beta ,SCM_GSD_v1 [...] --builddir =./scm/bin [--debug]

where the argument supplied via the --suites variable is a comma-separated list
of suite names that exist in the ./ccpp/suites directory. Note that suite names are
the suite definition filenames minus the suite_ prefix and .xml suffix.

4. Compile. Add VERBOSE=1 to obtain more information on the build process.
make

The resulting executable may be found at ./gmtb-scm (Full path of
gmtb-scm/scm/bin/gmtb-scm).

Although make clean is not currently implemented, an out-of-source build is used, so all
that is required to clean the build/run directory is (from the bin directory)
pwd #confirm that you are in the gmtb -scm/scm/bin directory before

deleting files
rm -rfd *

Note: This command can be dangerous (deletes files without confirming), so make sure
that you’re in the right directory before executing!

If you encounter errors, please capture a log file from all of the steps, and contact the
helpdesk at: gmtb-help@ucar.edu

9

gmtb-help@ucar.edu

2 Quick Start Guide

2.4 Run the SCM with a supplied case

There are several test cases provided with this version of the SCM. For all cases, the
SCM will go through the time steps, applying forcing and calling the physics defined
in the chosen suite definition file using physics configuration options from an associated
namelist. The model is executed through one of two Python run scripts that are pre-
staged into the bin directory: run_gmtb_scm.py or multi_run_gmtb_scm.py. The first
sets up and runs one integration while the latter will set up and run several integrations
serially.

2.4.1 Single Run Script Usage

Running a case requires three pieces of information: the case to run (consisting of initial
conditions, geolocation, forcing data, etc.), the physics suite to use (through a CCPP suite
definition file), and a physics namelist (that specifies configurable physics options to use).
As discussed in chapter 5, cases are set up via their own namelists in ../etc/case_config.
A default physics suite is provided as a user-editable variable in the script and default
namelists are associated with each physics suite (through ../src/default_namelists.py),
so, technically, one must only specify a case to run with the SCM. The single run script’s
interface is described below.
./ run_gmtb_scm.py -c CASE_NAME [-s SUITE_NAME] [-n

PHYSICS_NAMELIST_WITH_PATH] [-g] [-d]

When invoking the run script, the only required argument is the name of the case to
run. The case name used must match one of the case configuration files located in
../etc/case_config (without the .nml extension!). If specifying a suite other than the
default, the suite name used must match the value of the suite name in one of the suite
definition files located in ../../ccpp/suites (Note: not the filename of the suite definition
file). As part of the fourth CCPP release, the following suite names are valid:

1. SCM_GFS_v15p2
2. SCM_GFS_v16beta
3. SCM_GFS_v15p2_no_nsst
4. SCM_GFS_v16beta_no_nsst
5. SCM_csawmg
6. SCM_GSD_v1

Note that using the Thompson microphysics scheme (as in SCM_GSD_v1) requires
the computation of look-up tables during its initialization phase. As of the release, this
process has been prohibitively slow with this model, so it is HIGHLY suggested that these
look-up tables are downloaded and staged to use this scheme (and the SCM_GSD_v1
suite) as described in section 2.3.

Also note that some cases require specified surface fluxes. Special suite definition files that
correspond to the suites listed above have been created and use the *_prescribed_surface

10

2 Quick Start Guide

decoration. It is not necessary to specify this filename decoration when specifying the
suite name. If the spec_sfc_flux variable in the configuration file of the case being run
is set to .true., the run script will automatically use the special suite definition file that
corresponds to the chosen suite from the list above.

If specifying a namelist other than the default, the value must be an entire filename that
exists in ../../ccpp/physics_namelists. Caution should be exercised when modifying
physics namelists since some redundancy between flags to control some physics parame-
terizations and scheme entries in the CCPP suite definition files currently exists. Values of
numerical parameters are typically OK to change without fear of inconsistencies. Lastly,
the -g flag can be used to run the executable through the gdb debugger (assuming it is
installed on the system), and the -d flag is required when running this command in a
Docker container in order to successfully mount a volume between the host machine and
the Docker container instance and to share the output and plots with the host machine.

A netCDF output file is generated in the location specified in the case configuration file,
if the output_dir variable exists in that file. Otherwise an output directory is constructed
from the case, suite, and namelist used (if different from the default). All output direc-
tories are placed in the bin directory. If using a Docker container, all output is copied
to the /home directory in container space for volume-mounting purposes. Any standard
netCDF file viewing or analysis tools may be used to examine the output file (ncdump,
ncview, NCL, etc).

2.4.2 Multiple Run Script Usage

A second Python script is provided for automating the execution of multiple integrations
through repeated calling of the single run script. From the run directory, one may use
this script through the following interface.
./ multi_run_gmtb_scm.py {[-c CASE_NAME] [-s SUITE_NAME] [-f

PATH_TO_FILE]} [-v{v}] [-t] [-d]

No arguments are required for this script. The -c or –case, -s or –suite, or -f or
–file options form a mutually-exclusive group, so exactly one of these is allowed at one
time. If –c is specified with a case name, the script will run a set of integrations for all
supported suites (defined in ../src/supported_suites.py) for that case. If -s is specified
with a suite name, the script will run a set of integrations for all supported cases (defined
in ../src/supported_cases.py) for that that suite. If -f is specified with the path to
a filename, it will read in lists of cases, suites, and namelists to use from that file. An
example for this file’s syntax can be found in ../src/example_multi_run.py. If multiple
namelists are specified in the file, there either must be one suite specified or the number
of suites must match the number of namelists. If none of the -c or –case, -s or –suite,
or -f or –file options group is specified, the script will run through all permutations of
supported cases and suites (as defined in the files previously mentioned).

In addition to the main options, some helper options can also be used with any of those
above. The -vv or –verbose option can be used to output more information from the

11

2 Quick Start Guide

script to the console and to a log file. If this option is not used, only completion progress
messages are written out. If one -v is used, the script will write out completion progress
messages and all messages and output from the single run script. If two -vv are used,
the script will also write out all messages and single run script output to a log file
(multi_run_gmtb_scm.log) in the bin directory. The option, -t or –timer, can be used
to output the elapsed time for each integration executed by the script. Note that the
execution time includes file operations performed by the single run script in addition
to the execution of the underlying (Fortran) SCM executable. By default, this option
will execute one integration of each subprocess. Since some variability is expected for
each model run, if greater precision is required, the number of integrations for timing
averaging can be set through an internal script variable. This option can be useful, for
example, for getting a rough idea of relative computational expense of different physics
suites. Finally, the -d flag is required when running this command in a Docker container in
order to successfully mount a volume between the host machine and the Docker container
instance and to share the output and plots with the host machine.

2.4.3 Batch Run Script

If using the model on HPC resources and significant amounts of processor time is
anticipated for the experiments, it will likely be necessary to submit a job through
the HPC’s batch system. An example script has been included in the reposi-
tory for running the model on Hera’s batch system (SLURM). It is located in
gmtb-scm/scm/etc/gmtb_scm_slurm_example.py. Edit the job_name, account, etc. to suit
your needs and copy to the bin directory. The case name to be run is included in the
command variable. To use, invoke
./ gmtb_scm_slurm_example.py

from the bin directory.

Additional details regarding the SCM may be found in the remainder of this guide. More
information on the CCPP can be found in the CCPP Technical Documentation available
at https://ccpp-techdoc.readthedocs.io/en/v4.0/.

2.5 Creating and Using a Docker Container with SCM
and CCPP

In order to run a precompiled version of the CCPP SCM in a container, Docker will need
to be available on your machine. Please visit https://www.docker.com to download
and install the version compatible with your system. Docker frequently releases updates
to the software; it is recommended to apply all available updates. NOTE: In order
to install Docker on your machine, you will be required to have root access privileges.
More information about getting started can be found at https://docs.docker.com/
get-started

12

https://ccpp-techdoc.readthedocs.io/en/v4.0/
https://www.docker.com
https://docs.docker.com/get-started
https://docs.docker.com/get-started

2 Quick Start Guide

The following tips were acquired during a recent installation of Docker on a machine
with Windows 10 Home Edition. Further help should be obtained from your system
administrator or, lacking other resources, an internet search.

• Windows 10 Home Edition does not support Docker Desktop due to lack of “Hyper-
V” support, but does work with Docker Toolbox. See the installation guide (https:
//docs.docker.com/toolbox/toolbox_install_windows/).

• You may need to turn on your CPU’s hardware virtualization capability through
your system’s BIOS.

• After a successful installation of Docker Toolbox, starting with Docker Quick-
start may result in the following error even with virtualization correctly en-
abled: This computer doesn’t have VT-X/AMD-v enabled. Enabling it in the
BIOS is mandatory. We were able to bypass this error by opening a bash terminal
installed with Docker Toolbox, navigating to the directory where it was installed,
and executing the following command:
docker -machine create default --virtualbox -no-vtx -check

2.5.1 Building the Docker image

The Dockerfile builds CCPP SCM v4.0 from source using the GNU compiler. A number
of required codes are built and installed via the DTC-supported common community
container. For reference, the common community container repository can be accessed
here: https://github.com/NCAR/Common-Community-Container.

The CCPP SCM has a number of system requirements and necessary libraries and tools.
Below is a list, including versions, used to create the the GNU-based Docker image:

• gfortran - 8.3.1
• gcc - 8.3.1
• cmake - 3.16.5
• netCDF - 4.6.2
• HDF5 - 1.10.4
• ZLIB - 1.2.7
• SZIP - 2.1.1
• Python - 2.7.5
• NCEPLIBS subset: bacio v2.2.0_4, sp v2.1.0_d, w3nco v2.1.0_d

A Docker image containing the SCM, CCPP, and its software prerequisites can be gen-
erated from the code in the software repository obtained by following section 2.1 by
executing the following steps:

NOTE: Windows users can execute these steps in the terminal application that was
installed as part of Docker Toolbox.

1. Navigate to the gmtb-scm/docker directory.

13

https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://github.com/NCAR/Common-Community-Container

2 Quick Start Guide

2. Run the docker build command to generate the Docker image, using the supplied
Dockerfile.
docker build -t ccpp -scm .

Inspect the Dockerfile if you would like to see details for how the image is built.
The image will contain SCM prerequisite software from DTC, the SCM and CCPP
code, and a pre-compiled executable for the SCM with the 6 supported suites for
the SCM. A successful build will show two images: dtcenter/common-community-
container, and ccpp-scm. To list images, type:
docker images

2.5.2 Using a prebuilt Docker image from Dockerhub

A prebuilt Docker image for this release is available on Dockerhub if it is not desired to
build from source. In order to use this, execute the following from the terminal where
Docker is run:
docker pull dtcenter/ccpp -scm:v4.0.0

To verify that it exists afterward, run
docker images

2.5.3 Running the Docker image

NOTE: Windows users can execute these steps through the Docker Quickstart application
installed with Docker Toolbox.

1. Set up a directory that will be shared between the host machine and the Docker
container. When set up correctly, it will contain output generated by the SCM
within the container for manipulation by the host machine. For Mac/Linux,
mkdir -p /path/to/output

For Windows, you can try to create a directory of your choice to mount to the
container, but it may not work or require more configuration, depending on your
particular Docker installation. We have found that Docker volume mounting in
Windows can be difficult to set up correctly. One method that worked for us was
to create a new directory under our local user space, and specifying the volume
mount as below. In addition, with Docker Toolbox, double check that the mounted
directory has correct permissions. For example, open VirtualBox, right click on the
running virtual machine, and choose “Settings”. In the dialog that appears, make
sure that the directory you’re trying to share shows up in “Shared Folders" (and
add it if it does not) and make sure that the “auto-mount" and “permanent" options
are checked.

2. Set an environment variable to use for your SCM output directory. For t/csh shells,

14

2 Quick Start Guide

setenv OUT_DIR /path/to/output

For bourne/bash shells,
export OUT_DIR =/path/to/output

For Windows, the format that worked for us followed this example: /c/Users/my
username/path/to/directory/to/mount

3. To run the SCM, you can run the Docker container that was just created and give
it the same run commands as discussed in sections 2.4.1 and 2.4.2. Be sure to
remember to include the -d option for all run commands. For example,
docker run --rm -it -v ${OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm ./ run_gmtb_scm.py -c twpice -d

will run through the TWPICE case using the default suite and namelist and put
the output in the shared directory. NOTE: Windows users may need to omit the
curly braces around environment variables: use $OUT_DIR instead of ${OUT_DIR}.
For running through all supported cases and suites, use
docker run --rm -it -v ${OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm ./ multi_run_gmtb_scm.py -d

The options included in the above run commands are the following:
• −−rm removes the container when it exits
• -it interactive mode with terminal access
• -v specifies the volume mount from host directory (outside container) to inside

the container. Using volumes allows you to share data between the host ma-
chine and container. For running the SCM, the output is being mounted from
/home inside the container to the OUT_DIR on the host machine. Upon exiting
the container, data mounted to the host machine will still be accessible.

• −−name names the container. If no name is provided, the daemon will auto-
generate a random string name.

NOTE: If you are using a prebuilt image from Dockerhub, substitute the name of
the image that was pulled from Dockerhub in the commands above; i.e. instead of
ccpp-scm above, one would have dtcenter/ccpp-scm:v4.0.0.

4. To use the SCM interactively, run non-default configurations, create plots, or even
develop code, issue the following command:
docker run --rm -it -v ${OUT_DIR }:/ home --name run -ccpp -scm ccpp -

scm /bin/bash

You will be placed within the container space and within the bin directory of the
SCM with a pre-compiled executable. At this point, one could use the run scripts as
described in previous sections (remembering to include the -d option on run scripts
if output is to be shared with the host machine). To create plots, from within the
bin directory of the SCM in container space, issue the following command, with an
appropriately configured *.ini file, .i.e.
./ gmtb_scm_analysis.py twpice_all_suites.ini -d

NOTE: If developing, since the container is ephemeral, one should push their
changes to a remote git repository to save them (i.e. a fork on GitHub.com).

15

3 Repository

3.1 What is included in the repository?

The repository contains all code and data required to run the CCPP SCM (with the
exception of large initialization tables for the Thompson microphysics scheme discussed
in subsection 2.4.1). It is functionally separated into 3 subdirectories representing the
SCM model infrastructure (scm directory), the CCPP infrastructure (ccpp/framework
directory), and the CCPP physics schemes (ccpp/physics directory). The entire
gmtb-scm repository resides on Github’s NCAR space, and the ccpp/framework and
ccpp/physics directories are git submodules that point to repositories ccpp-framework
and ccpp-physics on the same space. The structure of the entire repository is repre-
sented below. Note that the ccpp-physics repository also contains files needed for using
the CCPP with the UFS Atmosphere host model that uses the Finite-Volume Cubed-
Sphere (FV3) dynamical core.

gmtb-scm/
ccpp/

config/............................contains the CCPP prebuild configuration file
framework/

cmake/ custom cmake code for building ccpp-framework
CMakeLists.txt...................cmake configuration file for ccpp-framework
CODEOWNERS..................... list of GitHub users with permission to merge
doc/...doxygen configuration, output, and Technical Documentation (obsolete)
LICENSE
README.md
schemes/....................................contains schemes used for testing
scripts/contains ccpp_prebuild and other Python scripts for parsing metadata
src/... contains CCPP framework code
test/...........................contains scripts and configurations for testing
tests contains next-generation files for testing

physics/..contains all physics schemes
CMakeLists.txt......................cmake configuration file for ccpp-physics
CODEOWNERS..................... list of GitHub users with permission to merge
LICENSE
pgifix.py
physics/...................contains all CCPP physics and interstitial schemes

docs/......................contains CCPP physics doxygen documentation
README.md

physics_namelists contains physics namelist files associated with suites

16

3 Repository

suites/ .. contains suite definition files
CODEOWNERS............................list of GitHub users with permission to merge
contrib/

build_nceplibs.sh............script for installing prerequisite NCEPLIBS locally
get_thompson_tables.sh.script for downloading/extracting the Thompson lookup
tables

docker/
Dockerfile.......contains Docker instructions for building the CCPP SCM image

README.md
scm/

bin/........................build directory (initially empty; populated by cmake)
data/

comparison_data/..........contains data with which to compare SCM output
physics_input_data/..............contains data needed by the CCPP physics
processed_case_input/.......contains initialization and forcing data for cases
raw_case_input/.................contains case data to be processed by scripts
vert_coord_data/ contains data to calculate vertical coordinates (from
GSM-based GFS only)

doc/..contains this User’s/Technical Guide
TechGuide/ contains LaTeX for this User’s Guide

etc/........contains case configuration, machine setup scripts, and plotting scripts
case_config/.................................contains case configuration files
CENTOS_docker_setup.sh.........contains machine setup for Docker container
Cheyenne_setup_gnu.csh......... setup script for Cheyenne HPC for csh, tcsh
Cheyenne_setup_gnu.sh...........setup script for Cheyenne HPC for sh, bash
Cheyenne_setup_intel.csh.......setup script for Cheyenne HPC for csh, tcsh
Cheyenne_setup_intel.sh setup script for Cheyenne HPC for sh, bash
gmtb_scm_slurm_example.py.......................example QSUB run script
Hera_setup_intel.csh............... setup script for Theia HPC for csh, tcsh
Hera_setup_intel.sh.................setup script for Theia HPC for sh, bash
scripts/......................Python scripts for setting up cases and plotting

f90nml.0.19/.....................................f90nml Python package
Shapely-1.7.0...................................Shapely Python package
plot_configs/.....................................plot configuration files

LICENSE.txt
src/...................source code for SCM infrastructure and Python run scripts

17

4 Algorithm

4.1 Algorithm Overview

Like most SCMs, the algorithm for the CCPP SCM is quite simple. In a nutshell, the
SCM code performs the following:

• Read in an initial profile and the forcing data.
• Create a vertical grid and interpolate the initial profile and forcing data to it.
• Initialize the physics suite.
• Perform the time integration, applying forcing and calling the physics suite each

time step.
• Output the state and physics data.

In this chapter, it will briefly be described how each of these tasks is performed.

4.2 Reading input

The following steps are performed at the beginning of program execution:

1. Call get_config_nml() in the gmtb_scm_input module to read in the case_config
and physics_config namelists. This subroutine also sets some variables within the
scm_state derived type from the data that was read.

2. Call get_case_init() in the gmtb_scm_input module to read in the case input data
file. This subroutine also sets some variables within the scm_input derived type
from the data that was read.

3. Call get_reference_profile() in the gmtb_scm_input module to read in the refer-
ence profile data. This subroutine also sets some variables within the scm_reference
derived type from the data that was read. At this time, there is no “standard” for-
mat for the reference profile data file. There is a select case statement within
the get_reference_profile() subroutine that reads in differently-formatted data.
If adding a new reference profile, it will be required to add a section that reads its
data in this subroutine.

18

4 Algorithm

4.3 Setting up vertical grid and interpolating input data

The CCPP SCM uses pressure for the vertical coordinate (lowest index is the surface).
There are two choices for generating the vertical coordinate corresponding to a) the 2017
operational GFS v14 based on the Global Spectral Model (GSM) (set model_name =
‘GFS’ in the case_config file), and b) the FV3-based GFS v15 (set model_name = ‘FV3’
in the case_config file). For both methods, the pressure levels are calculated using the
surface pressure and coefficients (ak and bk). For the GSM-based vertical coordinate,
the coefficient data is read from an external file. Only 28, 42, 60, 64, and 91 levels are
supported. If using the FV3-based vertical coordinate, it is possible to use potentially any
(integer) number of vertical levels. Depending on the vertical levels specified, however,
the method of specification of the coefficients may change. Please see the subroutine
get_FV3_vgrid in the source file gmtb-scm/scm/src/gmtb_scm_vgrid.F90 for details. This
subroutine was minimally adapted from the source file fv_eta.F90 from the v0 release
version of the FV3GFS model.

After the vertical grid has been set up, the state variable profiles stored in the scm_state
derived data type are interpolated from the input and reference profiles in the set_state
subroutine of the gmtb_scm_setup module.

4.4 Physics suite initialization

With the CCPP framework, initializing a physics suite is a 5-step process:

1. Call ccpp_init() with the name of the suite and the CCPP derived data type
(cdata) as arguments. This call will read and parse the suite definition file and
initialize the cdata derived data type.

2. Initialize variables needed for the suite initialization routine. For suites originating
from the GFS model, this involves setting some values in a derived data type used
in the initialization subroutine. Call the suite initialization subroutine to perform
suite initialization tasks that are not already performed in the init routines of the
CCPP-compliant schemes (or associated initialization stages for groups or suites
listed in the suite definition file). Note: As of this release, this step will require
another suite intialization subroutine to be coded for a non-GFS-based suite to
handle any initialization that is not already performed within CCPP-compliant
scheme initialization routines.

3. Associate the scm_state variables with the appropriate pointers in the physics
derived data type. Note: It is important that this step be performed before the
next step to avoid segmentation faults.

4. Execute the ccpp_field_add() calls for the remaining variables to be used by the
physics schemes. This step makes all physics variables that are exposed by the host
application available to all physics schemes in the suite. This is done through an
inclusion of an external file, ccpp_fields.inc that is automatically generated from
the ccpp_prebuild.py script using the metadata contained in the host application
cap (gmtb-scm/scm/src/gmtb_scm_type_defs.f90 in the current implementation).

19

4 Algorithm

5. Call ccpp_physics_init with the cdata derived data type as input. This call exe-
cutes the initialization stages of all schemes, groups, and suites that are defined in
the suite definition file.

4.5 Time integration

Two time-stepping schemes have been implemented within the CCPP SCM: forward
Euler (time_scheme = 1 in the case_config namelist) and filtered leapfrog (time_scheme
= 2 in the case_config namelist). If the leapfrog scheme is chosen, two time levels of
state variables are saved and the first time step is implemented as forward time step over
∆t/2.

During each step of the time integration, the following sequence occurs:

1. Update the elapsed model time.
2. Calculate the current date and time given the initial date and time and the elapsed

time.
3. If the leapfrog scheme is used, save the unfiltered model state from the previous

time step.
4. Call the interpolate_forcing() subroutine in the gmtb_scm_forcing module to

interpolate the forcing data in space and time.
5. Recalculate the pressure variables (pressure, Exner function, geopotential) in case

the surface pressure has changed.
6. Call do_time_step() in the gmtb_scm_time_integration module. Within this sub-

routine:
• Call the appropriate apply_forcing_* subroutine from the gmtb_scm_forcing

module.
• If using the leapfrog scheme, transfer the model state from one memory slot

to the other.
• For each column, call ccpp_physics_run() to call all physics schemes within

the suite (this assumes that all suite parts are called sequentially without
intervening code execution)

7. If using the leapfrog scheme, call filter() in the gmtb_scm_time_integration mod-
ule to time filter the model state.

8. Check to see if output should be written during the current time step and call
output_append() in the gmtb_scm_output module if necessary.

4.6 Writing output

As of this release, the SCM output is only instantaneous. Specifying an output_frequency
in the case configuration file greater than the timestep will result in data loss. Prior to
the physics suite being initialized, the output_init() subroutine in the gmtb_scm_output
module is called to create the netCDF output file and define all dimensions and variables.

20

4 Algorithm

Immediately after the physics suite initialization and at the defined frequency within the
time integration loop, the output_append() subroutine is called and instantaneous data
values are appended to the netCDF file. Any variables defined in the scm_state and/or
physics derived data types are accessible to the output subroutines. Writing new vari-
ables to the output involves hard-coding lines in the output_init() and output_append()
subroutines.

21

5 Cases

5.1 How to run cases

Only two files are needed to set up and run a case with the SCM. The first is a config-
uration namelist file found in gmtb-scm/scm/etc/case_config that contains parameters
for the SCM infrastructure. The second necessary file is a netCDF file containing data
to initialize the column state and time-dependent data to force the column state. The
two files are described below.

5.1.1 Case configuration namelist parameters

The case_config namelist expects the following parameters:

• model_name
– This controls which vertical coordinates to use. Valid values are ’FV3’ or

‘GFS’. Here, ‘GFS’ refers to vertical coordinates used in the GSM.
• n_columns

– The code can be used to run a single column or multiple independent columns
using the same or different physics suites. Specify an integer, n. NOTE: As of
this release, only n_columns = 1 is supported.

• case_name
– Identifier for which dataset (initialization and forcing) to load.

This string must correspond to a dataset included in the directory
gmtb-scm/scm/data/processed_case_input/ (without the file extension).

• dt
– Time step in seconds (floating point)

• time_scheme
– Specify 1 for the forward-Euler time-stepping scheme or 2 for the filtered

leapfrog scheme.
• runtime

– Specify the model runtime in seconds (integer). This should correspond with
the forcing dataset used. If a runtime is specified that is longer than the
supplied forcing, the forcing is held constant at the last specified values.

• output_frequency
– Specify the frequency of the model output in seconds (floating point). Cur-

rently, no averaging of the output fields is done if output_frequency 6= dt; only
instantaneous output at the supplied frequency is implemented.

22

5 Cases

• n_levels
– Specify the integer number of vertical levels. If model_name=‘GFS’, only values

of 28, 42, 60, 64, 91 are supported.
• output_dir

– A string representing the path (relative to the build directory) to which output
should be written. (OPTIONAL)

• output_file
– A string representing the name of the netCDF output file to be written (no

.nc extension expected).
• case_data_dir

– A string representing the path (relative to the build directory) where case
initialization and forcing data files can be found.

• vert_coord_data_dir
– A string representing the path (relative to the build directory) where vertical

coordinate data files can be found (for model_name=‘GFS’ only).
• thermo_forcing_type

– An integer representing how forcing for temperature and moisture state vari-
ables is applied (1 = total advective tendencies, 2 = horizontal advective ten-
dencies with prescribed vertical motion, 3 = relaxation to observed profiles
with vertical motion prescribed)

• mom_forcing_type
– An integer representing how forcing for horizontal momentum state variables

is applied (1 = total advective tendencies; not implemented yet, 2 = hori-
zontal advective tendencies with prescribed vertical motion, 3 = relaxation to
observed profiles with vertical motion prescribed)

• relax_time
– A floating point number representing the timescale in seconds for the relaxation

forcing (only used if thermo_forcing_type = 3 or mom_forcing_type = 3)
• sfc_flux_spec

– A boolean set to .true. if surface flux are specified from the forcing data
(there is no need to have surface schemes in a suite definition file if so)

• sfc_roughness_length_cm
– Surface roughness length in cm for calculating surface-related fields from spec-

ified surface fluxes (only used if sfc_flux_spec is True).
• sfc_type

– An integer representing the character of the surface (0 = sea surface, 1 = land
surface, 2 = sea-ice surface)

• reference_profile_choice
– An integer representing the choice of reference profile to use above the supplied

initialization and forcing data (1 = “McClatchey” profile, 2 = mid-latitude
summer standard atmosphere)

• year
– An integer representing the year of the initialization time

• month
– An integer representing the month of the initialization time

• day
– An integer representing the day of the initialization time

• hour

23

5 Cases

– An integer representing the hour of the initialization time
• column_area

– A list of floating point values representing the characteristic horizontal domain
area of each atmospheric column in square meters (this could be analogous
to a 3D model’s horizontal grid size or the characteristic horizontal scale of
an observation array; these values are used in scale-aware schemes; if using
multiple columns, you may specify an equal number of column areas)

• model_ics
– A boolean set to .true. if UFS atmosphere initial conditions are used rather

than field campaign-based initial conditions
• C_RES

– An integer representing the grid size of the UFS atmosphere initial conditions;
the integer represents the number of grid points in each horizontal direction
of each cube tile

5.1.2 Case input data file

The initialization and forcing data for each case is stored in a netCDF (version 4) file
within the gmtb-scm/scm/data/processed_case_input directory. Each file has two dimen-
sions (time and levels) and is organized into 3 groups: scalars, initial, and forcing. Not
all fields are required for all cases. For example the fields sh_flux_sfc and lh_flux_sfc
are only needed if the variable sfc_flx_spec = .true. in the case configuration file and
state nudging variables are only required if thermo_forcing_type = 3 or mom_forcing_type
= 3. Using an active LSM (Noah, NoahMP, RUC) requires many more variables than
are listed here. Example files for using with Noah and NoahMP LSMs are included in
gmtb-scm/scm/data/processed_case_input/fv3_model_point_noah[mp].nc.

Listing 5.1: example netCDF file header for case initialization and forcing data
netcdf arm_sgp_summer_1997 {
dimensions :

time = UNLIMITED ; // (233 currently)
levels = UNLIMITED ; // (35 currently)

variables :
float time(time) ;

time: units = "s" ;
time: description = " elapsed time since the beginning of the simulation " ;

float levels (levels) ;
levels : units = "Pa" ;
levels : description = " pressure levels " ;

// global attributes :
: description = "GMTB SCM forcing file for the ARM SGP Summer of 1997 case" ;

group : scalars {
} // group scalars

group : initial {
variables :

float height (levels) ;
height : units = "m" ;
height : description = " physical height at pressure levels " ;

float thetail (levels) ;
thetail : units = "K" ;
thetail : description = " initial profile of ice - liquid water potential temperature " ;

float qt(levels) ;
qt: units = "kg kg ^ -1" ;

24

5 Cases

qt: description = " initial profile of total water specific humidity " ;
float ql(levels) ;

ql: units = "kg kg ^ -1" ;
ql: description = " initial profile of liquid water specific humidity " ;

float qi(levels) ;
qi: units = "kg kg ^ -1" ;
qi: description = " initial profile of ice water specific humidity " ;

float u(levels) ;
u: units = "m s^ -1" ;
u: description = " initial profile of E-W horizontal wind" ;

float v(levels) ;
v: units = "m s^ -1" ;
v: description = " initial profile of N-S horizontal wind" ;

float tke(levels) ;
tke: units = "m^2 s^ -2" ;
tke: description = " initial profile of turbulence kinetic energy " ;

float ozone (levels) ;
ozone : units = "kg kg ^ -1" ;
ozone : description = " initial profile of ozone mass mixing ratio " ;

} // group initial

group : forcing {
variables :

float lat(time) ;
lat: units = " degrees N" ;
lat: description = " latitude of column " ;

float lon(time) ;
lon: units = " degrees E" ;
lon: description = " longitude of column " ;

float p_surf (time) ;
p_surf : units = "Pa" ;
p_surf : description = " surface pressure " ;

float T_surf (time) ;
T_surf : units = "K" ;
T_surf : description = " surface absolute temperature " ;

float sh_flux_sfc (time) ;
sh_flux_sfc : units = "K m s^ -1" ;
sh_flux_sfc : description = " surface sensible heat flux" ;

float lh_flux_sfc (time) ;
lh_flux_sfc : units = "kg kg^-1 m s^ -1" ;
lh_flux_sfc : description = " surface latent heat flux" ;

float w_ls(levels , time) ;
w_ls: units = "m s^ -1" ;
w_ls: description = " large scale vertical velocity " ;

float omega (levels , time) ;
omega : units = "Pa s^ -1" ;
omega : description = " large scale pressure vertical velocity " ;

float u_g(levels , time) ;
u_g: units = "m s^ -1" ;
u_g: description = " large scale geostrophic E-W wind" ;

float v_g(levels , time) ;
v_g: units = "m s^ -1" ;
v_g: description = " large scale geostrophic N-S wind" ;

float u_nudge (levels , time) ;
u_nudge : units = "m s^ -1" ;
u_nudge : description = "E-W wind to nudge toward " ;

float v_nudge (levels , time) ;
v_nudge : units = "m s^ -1" ;
v_nudge : description = "N-S wind to nudge toward " ;

float T_nudge (levels , time) ;
T_nudge : units = "K" ;
T_nudge : description = " absolute temperature to nudge toward " ;

float thil_nudge (levels , time) ;
thil_nudge : units = "K" ;
thil_nudge : description = " potential temperature to nudge toward " ;

float qt_nudge (levels , time) ;
qt_nudge : units = "kg kg ^ -1" ;
qt_nudge : description = "q_t to nudge toward " ;

float dT_dt_rad (levels , time) ;
dT_dt_rad : units = "K s^ -1" ;
dT_dt_rad : description = " prescribed radiative heating rate" ;

float h_advec_thetail (levels , time) ;
h_advec_thetail : units = "K s^ -1" ;

25

5 Cases

h_advec_thetail : description = " prescribed theta_il tendency due to horizontal
advection " ;

float v_advec_thetail (levels , time) ;
v_advec_thetail : units = "K s^ -1" ;
v_advec_thetail : description = " prescribed theta_il tendency due to vertical

advection " ;
float h_advec_qt (levels , time) ;

h_advec_qt : units = "kg kg^-1 s^ -1" ;
h_advec_qt : description = " prescribed q_t tendency due to horizontal advection " ;

float v_advec_qt (levels , time) ;
v_advec_qt : units = "kg kg^-1 s^ -1" ;
v_advec_qt : description = " prescribed q_t tendency due to vertical advection " ;

} // group forcing
}

5.2 Included Cases

Several cases are included in the repository to serve as examples for users to create their
own and for basic research. All case configuration namelist files for included cases can be
found in gmtb-scm/scm/etc/case_config and represent the following observational field
campaigns:

• Tropical Warm Pool – International Cloud Experiment (TWP-ICE) maritime deep
convection

• Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Sum-
mer 1997 continental deep convection

• Atlantic Stratocumulus Transition EXperiment (ASTEX) maritime stratocumulus-
to-cumulus transition

• Barbados Oceanographic and Meteorological EXperiment (BOMEX) maritime shal-
low convection

• Large eddy simulation ARM Symbiotic Simulation and Observation (LASSO) for
May 18, 2016 (with capability to run all LASSO dates - see 5.4) continental shallow
convection

For the ARM SGP case, several case configuration files representing different time periods
of the observational dataset are included, denoted by a trailing letter. The LASSO case
may be run with different forcing applied, so three case configuration files corresponding
to these different forcing are included. In addition, two example cases are included for
using UFS Atmosphere initial conditions:

• UFS initial conditions for 38.1 N, 98.5 W (central Kansas) for 00Z on Oct. 3, 2016
with Noah variables on the C96 FV3 grid (fv3_model_point_noah.nc)

• UFS initial conditions for 38.1 N, 98.5 W (central Kansas) for 00Z on Oct. 3, 2016
with NoahMP variables on the C96 FV3 grid (fv3_model_point_noahmp.nc)

See 5.5 for information on how to generate these files for other locations and dates, given
appropriate UFS Atmosphere initial conditions.

26

5 Cases

5.3 How to set up new cases

Setting up a new case involves preparing the two types of files listed above. For the
case initialization and forcing data file, this typically involves writing a custom script
or program to parse the data from its original format to the format that the SCM ex-
pects, listed above. An example of this type of script written in Python is included
in /gmtb-scm/scm/etc/scripts/twpice_forcing_file_generator.py. The script reads in
the data as supplied from its source, converts any necessary variables, and writes a
netCDF (version 4) file in the format described in subsection 5.1.2. For reference, the
following formulas are used:

θil = θ − θ

T

(
Lv

cp

ql + Ls

cp

qi

)
(5.1)

qt = qv + ql + qi (5.2)

where θil is the ice-liquid water potential temperature, θ is the potential temperature, Lv

is the latent heat of vaporization, Ls is the latent heat of sublimation cp is the specific
heat capacity of air at constant pressure, T is absolute temperature, qt is the total water
specific humidity, qv is the water vapor specific humidity, ql is the suspended liquid water
specific humidity, and qi is the suspended ice water specific humidity.

As shown in the example netCDF header, the SCM expects that the vertical dimension
is pressure levels (index 1 is the surface) and the time dimension is in seconds. The
initial conditions expected are the height of the pressure levels in meters, and arrays
representing vertical columns of θil in K, qt, ql, and qi in kg kg−1, u and v in m s−1,
turbulence kinetic energy in m2 s−2 and ozone mass mixing ratio in kg kg−1.

For forcing data, the SCM expects a time series of the following variables: latitude and
longitude in decimal degrees [in case the column(s) is moving in time (e.g., Lagrangian
column)], the surface pressure (Pa) and surface temperature (K). If surface fluxes are
specified for the new case, one must also include a time series of the kinematic surface
sensible heat flux (K m s−1) and kinematic surface latent heat flux (kg kg−1 m s−1).
The following variables are expected as 2-dimensional arrays (vertical levels first, time
second): the geostrophic u (E-W) and v (N-S) winds (m s−1), and the horizontal and
vertical advective tendencies of θil (K s−1) and qt (kg kg−1 s−1), the large scale vertical
velocity (m s−1), large scale pressure vertical velocity (Pa s−1), the prescribed radiative
heating rate (K s−1), and profiles of u, v, T, θil and qt to use for nudging.

Although it is expected that all variables are in the netCDF file, only those that
are used with the chosen forcing method are required to be nonzero. For example,
the following variables are required depending on the values of mom_forcing_type and
thermo_forcing_type specified in the case configuration file:

• mom_forcing_type = 1
– Not implemented yet

• mom_forcing_type = 2
– geostrophic winds and large scale vertical velocity

27

5 Cases

• mom_forcing_type = 2
– u and v nudging profiles

• thermo_forcing_type = 1
– horizontal and vertical advective tendencies of θil and qt and prescribed radia-

tive heating (can be zero if radiation scheme is active)
• thermo_forcing_type = 2

– horizontal advective tendencies of θil and qt, prescribed radiative heating (can
be zero if radiation scheme is active), and the large scale vertical pressure
velocity

• thermo_forcing_type = 2
– θil and qt nudging profiles and the large scale vertical pressure velocity

For the case configuration file, it is most efficient to copy an existing file in
gmtb-scm/scm/etc/case_config and edit it to suit one’s case. Recall from subsection
5.1.1 that this file is used to configure the SCM framework parameters for a given case.
Be sure to check that model timing parameters such as the time step and output frequency
are appropriate for the physics suite being used. There is likely some stability criterion
that governs the maximum time step based on the chosen parameterizations and number
of vertical levels (grid spacing). The case_name parameter should match the name of the
case input data file that was configured for the case (without the file extension). The
runtime parameter should be less than or equal to the length of the forcing data unless
the desired behavior of the simulation is to proceed with the last specified forcing values
after the length of the forcing data has been surpassed. The initial date and time should
fall within the forcing period specified in the case input data file. If the case input data is
specified to a lower altitude than the vertical domain, the remainder of the column will be
filled in with values from a reference profile. There is a tropical profile and mid-latitude
summer profile provided, although one may add more choices by adding a data file to
gmtb-scm/scm/data/processed_case_input and adding a parser section to the subrou-
tine get_reference_profile in gmtb-scm/scm/src/gmtb_scm_input.f90. Surface fluxes
can either be specified in the case input data file or calculated using a surface scheme
using surface properties. If surface fluxes are specified from data, set sfc_flux_spec to
.true. and specify sfc_roughness_length_cm for the surface over which the column re-
sides. Otherwise, specify a sfc_type. In addition, one must specify a column_area for
each column.

To control the forcing method, one must choose how the momentum and scalar variable
forcing are applied. The three methods of Randall and Cripe (1999, JGR) have been
implemented: “revealed forcing” where total (horizontal + vertical) advective tendencies
are applied (type 1), “horizontal advective forcing” where horizontal advective tendencies
are applied and vertical advective tendencies are calculated from a prescribed vertical
velocity and the calculated (modeled) profiles (type 2), and “relaxation forcing” where
nudging to observed profiles replaces horizontal advective forcing combined with vertical
advective forcing from prescribed vertical velocity (type 3). If relaxation forcing is chosen,
a relaxation_time that represents the timescale over which the profile would return to
the nudging profiles must be specified.

28

5 Cases

5.4 Using other LASSO cases

In order to use other LASSO cases than the one provided, perform the following steps:

1. Access http://archive.arm.gov/lassobrowser and use the navigation on the
left to choose the dates for which you would like to run a SCM simulation. Pay
attention to the “Large Scale Forcing” tab where you can choose how the large
scale forcing was generated, with options for ECMWF, MSDA, and VARANAL.
All are potentially valid, and it is likely worth exploring the differences among
forcing methods. Click on Submit to view a list of simulations for the selected
criteria. Choose from the simulations (higher skill scores are preferred) and check
the “Config Obs Model Tar” box to download the data. Once the desired simulations
have been checked, order the data (you may need to create an ARM account to do
so).

2. Once the data is downloaded, decompress it. From the config directory, copy the
files input_ls_forcing.nc, input_sfc_forcing.nc, and wrfinput_d01.nc into their
own directory under gmtb-scm/scm/data/raw_case_input/.

3. Modify gmtb-scm/scm/etc/scripts/lasso1_forcing_file_generator_gjf.py to
point to the input files listed above. Execute the script in order to generate a case
input file for the SCM (to be put in gmtb-scm/scm/data/processed_case_input/):
./ lasso1_forcing_file_generator_gjf.py

4. Create a new case configuration file (or copy and modify an existing one) in
gmtb-scm/scm/etc/case_config. Be sure that the case_name variable points to the
newly created/processed case input file from above.

5.5 Using UFS Initial Conditions

A script exists in scm/etc/scripts/UFS_IC_generator.py to read in UFS Atmosphere
cold start initial conditions and generate a case input data file that the SCM can use.
Since the Noah LSM is the operational LSM, it is assumed that initial variables for it
exist in the UFS Atmosphere initial condition files. Although NoahMP is not a member
of any officially supported suite as of this release, if NoahMP is to be used, its initial
conditions are generated from the Noah initial conditions using the same algorithm used
in the UFS Atmosphere. Note that the script requires a few python packages that may
not be found by default in all python installations: argparse, fnmatch, logging, netCDF4,
numpy, shapely, f90nml, and re.

NOTE: If using NOAA’s Hera HPC, the shapely python package does not seem to be
installed with the version of Anaconda used by the rest of this software package by default
so it is installed when users execute scm/etc/Hera_setup_intel.[csh/sh].

Users on other systems can test if shapely is installed using this command in the shell:
python -c "import shapely"

29

http://archive.arm.gov/lassobrowser

5 Cases

If shapely is installed, this command will succeed silently, otherwise an ImportError: No
module named shapely will be printed to screen. To install the shapely Python module,
use the install method preferred for your Python environment (easy_install, pip, conda,
. . .).

The UFS_IC_generator.py script usage is as follows:
./ UFS_IC_generator.py [-h] (-l LOCATION LOCATION | -ij INDEX INDEX) -d
DATE -i IN_DIR -g GRID_DIR [-t {1,2,3,4,5,6}]
[-a AREA] [-mp] -n CASE_NAME [-oc]

Mandatory arguments:

1. --location (-l) OR --index (-ij): Either longitude and latitude in decimal de-
grees east and north of a location OR the UFS grid index with the tile number

• -l 261.51 38.2 (two floating point values separated by a space)
• -ij 8 49 (two integer values separated by a space; this option must also use the

--tile (-t) argument to specify the tile number)
2. --date (-d) YYYYMMDDHHMM: date corresponding to the UFS initial condi-

tions
3. --in_dir (-i): path to the directory containing UFS initial conditions
4. --grid_dir (-g): path to the directory containing the UFS supergrid files (AKA

"fix" directory)
5. --case_name (-n): what to call the output netCDF file

Optional arguments:

1. --tile (-t): if one already knows the correct tile for the given longitude and
latitude OR one is specifying the UFS grid index (--index argument)

2. --noahmp (-mp): flag to generate cold-start initial conditions for NoahMP LSM
from Noah LSM initial conditions

3. --area (-a): area of grid cell in m2 (if known or different than the value calculated
from the supergrid file)

4. --old_chgres (-oc): flag if UFS initial conditions were generated using older ver-
sion of chgres (global_chgres); might be the case for pre-2018 data

The following command was used from within the scm/etc/scripts directory to generate
the example UFS Atmosphere initial condition case input file:
./ UFS_IC_generator.py -l 261.51 38.2 -d 201610030000 -i ../../ data/

raw_case_input/FV3_C96_example_ICs -g ../../ data/raw_case_input/
FV3_C96_example_ICs -n fv3_model_point_noah -oc

Note that the --in_dir (-i) and --grid_dir (-g) arguments are the same in this case
(since the supergrid files were copied to the same directory as the initial conditions files
for point of example), but they will not in general be the same. Also note that the default
behavior of the script is to expect that the netCDF initial condition files were generated
from chgres_cube and not the older global_chgres. If they were generated from the
older version (which is likely for pre-2018 data), they will have a slightly different format
requiring the --old_chgres (-oc) option to be set in order for the files to be read properly

30

5 Cases

by the script. If you try without the --old_chgres (-oc) flag and receive a “IndexError:
t not found” error, try the script again with the flag.

In addition to the case input files generated by this script, one will need appro-
priate case configuration files. Make sure that the model_ics variable is set to
.true. and that the C_RES, year, month, day, and hour are all set to the ap-
propriate values that match the UFS Atmosphere initial conditions used. See
scm/etc/case_config/fv3_model_point_noah.nml for an example.

Running the model is the same as for observational field campaign cases:
./ run_gmtb_scm.py -c fv3_model_point_noah -s SCM_GFS_v15p2

31

6 CCPP Interface

Chapter 6 of the CCPP v4 Technical Documentation (https://ccpp-techdoc.
readthedocs.io/en/v4.0) provides a wealth of information on the overall process of
connecting a host model to the CCPP framework for calling physics. This chapter de-
scribes the particular implementation within this SCM, including how to set up, initialize,
call, and change a physics suite using the CCPP framework.

6.1 Setting up a suite

Setting up a physics suite for use in the GMTB SCM with the CCPP framework involves
three steps: preparing data to be made available to physics through the CCPP, running
the ccpp_prebuild.py script to reconcile SCM-provided variables with physics-required
variables, and preparing a suite definition file.

6.1.1 Preparing data from the SCM

As described in sections 6.1 and 6.2 of the CCPP Technical Documentation a host model
must allocate memory and provide metadata for variables that are passed into and out of
the schemes within the physics suite. As of this release, in practice this means that a host
model must do this for all variables needed by all physics schemes that are expected to
be used with the host model. For this SCM, all variables needed by the physics schemes
are allocated and documented in the file gmtb-scm/scm/src/gmtb_scm_type_defs.f90 and
are contained within the physics derived data type. This derived data type initializes
its component variables in a create type-bound procedure. As mentioned in section 6.2
of the CCPP Technical Documentation, a table containing all required metadata was
constructed for describing all variables in the physics derived data type. The standard
names of all variables in this table must match with a corresponding variable within
one or more of the physics schemes. A list of all standard names used can be found
in ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_SCM.pdf. The local_name for
each variable corresponds to how a variable is referenced from the point in the code where
ccpp_field_add() statements are made. For this SCM, then, all local_names begin with
the physics derived data type. Nested within most of the local_names is also the name of
a derived data type used within the UFS Atmosphere cap (re-used here for expediency).
Since the ccpp_field_add() statements are made within a loop over all columns within
gmtb_scm.F90, most local_names are also referenced with i as an array index.

32

https://ccpp-techdoc.readthedocs.io/en/v4.0
https://ccpp-techdoc.readthedocs.io/en/v4.0
https://ccpp-techdoc.readthedocs.io/en/v4.0
https://ccpp-techdoc.readthedocs.io/en/v4.0/

6 CCPP Interface

6.1.2 Editing and running ccpp_prebuild.py

General instructions for configuring and running the ccpp_prebuild.py script can
be found in chapter 8 of the CCPP Technical Documentation. The script ex-
pects to be run with a host-model-dependent configuration file, passed as argument
–config=path_to_config_file. Within this configuration file are variables that hold
paths to the variable definition files (where metadata tables can be found on the host
model side), the scheme files (a list of paths to all source files containing scheme entry
points), the auto-generated physics schemes makefile snippet, the auto-generated physics
scheme caps makefile snippet, the file where ccpp_modules.inc and ccpp_fields.inc are
included, and the directory where the auto-generated physics caps should be written out
to. Other variables less likely to be modified by a user are included in this configuration
file as well, such as code sections to be included in the auto-generated scheme caps. As
mentioned in section 2.3, this script must be run to reconcile data provided by the SCM
with data required by the physics schemes before compilation by following step 1 in that
section.

6.1.3 Preparing a suite definition file

The suite definition file is a text file read by the model at compile time. It is used to
specify the physical parameterization suite, and includes information about the number of
parameterization groupings, which parameterizations that are part of each of the groups,
the order in which the parameterizations should be run, and whether subcycling will be
used to run any of the parameterizations with shorter timesteps.

In addition to the six or so major parameterization categories (such as radiation, boundary
layer, deep convection, resolved moist physics, etc.), the suite definition file can also have
an arbitrary number of additional interstitial schemes in between the parameterizations
to prepare or postprocess data. In many models, this interstitial code is not known to
the model user but with the suite definition file, both the physical parameterizations and
the interstitial processing are listed explicitly.

The suite definition file also invokes an initialization step, which is run only once when the
model is first initialized. Finally, the name of the suite is listed in the suite definition file.
By default, this suite name is used to compose the name of the shared library (.so file)
that contains the code for the physical parameterizations and that must be dynamically
linked at run time.

For this release, supported suite definition files used with this SCM are found in
gmtb-scm/ccpp/suites. For all of these suites, the physics schemes have been organized
into 3 groupings following how the physics are called in the UFS Atmosphere model,
although no code is executed in the SCM time loop between execution of the grouped
schemes. Several “interstitial” schemes are included in the suite definition file to execute
code that previously was part of a hard-coded physics driver. Some of these schemes may
eventually be rolled into the schemes themselves, improving portability.

33

https://ccpp-techdoc.readthedocs.io/en/v4.0/

6 CCPP Interface

6.2 Initializing/running a suite

The process for initializing and running a suite in this SCM is described in sections
4.4 and 4.5, respectively. A more general description of the process for performing suite
initialization and running can also be found in sections 6.4 and 6.5 of the CCPP Technical
Documentation.

6.3 Changing a suite

6.3.1 Replacing a scheme with another

When the CCPP has reached a state of maturity, the process for modifying the contents
of an existing physics suite will be a very straightforward process, consisting of merely
changing the name of the scheme in the suite definition file. As of this release, which
consists of one scheme of each “type” in the pool of CCPP-compliant physics schemes
with many short interstitial schemes, the process requires some consideration. Of course,
prior to being able to swap a scheme within a suite, one must first add a CCPP-compliant
scheme to the pool of available schemes in the CCPP physics repository. This process is
described in chapter 2 of the CCPP Technical Documentation.

Once a CCPP-compliant scheme has been added to the CCPP physics repository, the
process for modifying an existing suite should take the following steps into account:

• Examine and compare the arguments of the scheme being replaced and the replace-
ment scheme.
– Are there any new variables that the replacement scheme needs from the host

application? If so, these new variables must be added to the host model
cap. For the SCM, this involves adding a component variable to the physics
derived data type and a corresponding entry in the metadata table. The new
variables must also be allocated and initialized in the physics%create type-
bound procedure.

– Do any of the new variables need to be calculated in an interstitial scheme?
If so, one must be written and made CCPP-compliant itself. The CCPP
Technical Documentation will help in this endeavor, and the process outlined
in its chapter 2 should be followed.

– Do other schemes in the suite rely on output variables from the scheme being
replaced that are no longer being supplied by the replacement scheme? Do
these output variables need to be derived/calculated in an interstitial scheme?
If so, see the previous bullet about adding one.

• Examine existing interstitial schemes related to the scheme being replaced.
– There may be scheme-specific interstitial schemes (needed for one specific

scheme) and/or type-generic interstitial schemes (those that are called for all
schemes of a given type, i.e. all PBL schemes). Does one need to write analo-
gous scheme-specific interstitial schemes for the replacement?

34

https://ccpp-techdoc.readthedocs.io/en/v4.0/
https://ccpp-techdoc.readthedocs.io/en/v4.0/
https://ccpp-techdoc.readthedocs.io/en/v4.0/
https://ccpp-techdoc.readthedocs.io/en/v4.0/
https://ccpp-techdoc.readthedocs.io/en/v4.0/

6 CCPP Interface

– Are the type-generic interstitial schemes relevant or do they need to be modi-
fied?

• Depending on the answers to the above considerations, edit the suite definition file
as necessary. Typically, this would involve finding the <scheme> elements associated
with the scheme to be replaced and its associated interstitial <scheme> elements and
simply replacing the scheme names to reflect their replacements. See chapter 4 of
the CCPP Technical Documentation for further details.

6.3.2 Modifying “groups” of parameterizations

The concept of grouping physics in the suite definition file (currently reflected in the
<group name=“XYZ”> elements) enables “groups” of parameterizations to be called with
other computation (perhaps related to the dycore, I/O, etc.) in between. In the suite
definition file included in this release, three groups are specified, but currently no compu-
tation happens between ccpp_physics_run calls for these groups. However, one can edit
the groups to suit the needs of the host application. For example, if a subset of physics
schemes needs to be more tightly connected with the dynamics and called more fre-
quently, one could create a group consisting of that subset and place a ccpp_physics_run
call in the appropriate place in the host application. The remainder of the parameteriza-
tions groups could be called using ccpp_physics_run calls in a different part of the host
application code.

6.3.3 Subcycling parameterizations

The suite definition file allows subcycling of schemes, or calling a subset of schemes at a
smaller time step than others. The <subcycle loop = n> element in the suite definition
file controls this function. All schemes within such an element are called n times during
one ccpp_physics_run call. An example of this is found in the suite_SCM_GFS_v15p2.xml
suite definition file, where the surface schemes are executed twice for each timestep (imple-
menting a predictor/corrector paradigm). Note that no time step information is included
in the suite definition file. If subcycling is used for a set of parameterizations, the smaller
time step must be an input argument for those schemes.

6.4 Adding variables

6.4.1 Adding a physics-only variable

Suppose that one wants to add the variable foo to a scheme that spans the depth of the
column and that this variable is internal to physics, not part of the SCM state or subject
to external forcing. Here is how one would do so:

35

https://ccpp-techdoc.readthedocs.io/en/v4.0/

6 CCPP Interface

1. First, add the new variable to the physics derived data type definition in
gmtb-scm/scm/src/gmtb_scm_type_defs.f90. Within the definition, you’ll notice
that there are nested derived data types (which contain most of the variables needed
by the physics and are used for mainly legacy reasons) and several other integers/re-
als/logicals. One could add the new variable to one of the nested GFS derived data
types if the variable neatly fits inside one of them, but it is suggested to bypass the
GFS derived data types and add a variable directly to the physics type definition:
real(kind=kind_phys), allocatable :: foo(:,:)

2. Second, within the physics_create subroutine, add an allocate and initialization
statement.
allocate(foo(n_columns , n_levels))
physics%foo = 0.0

Note that even though foo only needs to have the vertical dimension, it is also
allocated with the n_columns dimension as the first dimension since this model is
intended to be used with multiple independent columns. Also, the initialization in
this creation subroutine can be overwritten by an initialization subroutine associ-
ated with a particular scheme.

3. At this point, these changes are enough to allocate the new variable (physics%create
is called in the main subroutine of gmtb_scm.F90), although this variable can-
not be used in a physics scheme yet. For that, you’ll need to add an entry
in the long metadata table entry that precedes the physics type definition in
gmtb_scm_type_defs.F90. This entry looks like:
!! | physics%foo(i) | foo | description of foo | units of foo |

rank of foo | data type of foo| kind of data type (if real) |
intent (none) | whether foo is optional (T or F) |

The elements of the metadata entry are all on one line (following the same format
as other entries) and include the variable’s “local name” or how it is referenced from
gmtb_scm.F90/main, its “standard name” or how it is referenced by both the host
model and the physics code, its units, its rank (dimensionality), Fortran intrinsic
data type, the real kind if necessary, its intent (must be none for this host-side
table), its optionality (must be F for this host-side table). This metadata entry is
parsed by the CCPP framework and makes this variable available for any CCPP-
compliant physics schemes to use.

4. On the physics scheme side, there will also be a metadata table entry for foo
preceding the subroutine in which it is used. For example, say that scheme bar uses
foo. If foo is further initialized in bar’s _init subroutine, a metadata entry for foo
must precede the bar_init subroutine’s code. If it is used in bar’s run subroutine,
a metadata entry for foo must also appear in the preceding metadata table for
bar_run. The metadata entry on the physics scheme side has the same format as
the one on the host model side described above. The standard name, units, rank,
type, and kind must match the entry from the host model table. Others attributes
(local name, description, intent, optional) can differ. The local name corresponds to
the name of the variable used within the scheme subroutine, and intent and optional
attributes should reflect how the variable is actually used within the scheme.
Note: In addition to the metadata table, the argument list for the scheme subroutine
must include the new variable (i.e., foo must actually be in the argument list for
bar_run and be declared appropriately in regular Fortran).

36

6 CCPP Interface

If a variable is declared following these steps, it can be used in any CCPP-compliant
physics scheme and it will retain its value from timestep to timestep. A variable will
ONLY be zeroed out (either every timestep or periodically) if it is in the GFS_interstitial
or GFS_diag data types. So, if one needs the new variable to be ‘prognostic’, one would
need to handle updating its value within the scheme, something like:

foot+1 = foot + ∆t ∗ foo_tendency (6.1)

Technically, the host model can “see” foo between calls to physics (since the host model
allocated its memory at initialization), but it will not be touching it.

6.4.2 Adding a prognostic SCM variable

The following instructions are valid for adding a passive, prognostic tracer to the SCM.
Throughout these instructions, the new tracer is called ‘smoke’.

1. Add a new tracer to the SCM state. In gmtb-scm/scm/src/gmtb_scm_type_defs.f90
do the following:

• Add an index for the new tracer in the scm_state_type definition.
• Do the following in the scm_state_create subroutine:

– Increment scm_state%n_tracers
– Set scm_state%smoke_index = (next available integer)
– Set scm_state%tracer_names(scm_state%smoke_index) = ‘smoke’
– Note: scm_state%state_tracer is initialized to zero in this subroutine

already, so there is no need to do so again.
2. Initialize the new tracer to something other than zero (from an input file).

• Edit an existing input file (in gmtb-scm/scm/data/processed_case_input): add
a field in the ‘initial’ group of the netCDF file(s) (with vertical dimension in
pressure coordinates) with an appropriate name in one (or all) of the input
netCDF files and populate with whatever values are necessary to initialize the
new tracer.

• Create a new input variable to read in the initialized values. In
gmtb-scm/scm/src/gmtb_scm_type_defs.f90:
– Add a new input variable in scm_input_type

real(kind=dp), allocatable :: input_smoke (:)

– In scm_input_create, allocate and initialize the new variable to 0.
• Read in the input values to initialize the new tracer. In

gmtb-scm/scm/src/gmtb_scm_input.f90/get_case_init:
– Add a variable under the initial profile section:

real(kind=dp), allocatable :: input_smoke (:) !< smoke
profile (fraction)

– Add the new input variable to the allocate statement.
– Read the values in from the file:

37

6 CCPP Interface

call check(NF90_INQ_VARID(grp_ncid ,"smoke",varID))
call check(NF90_GET_VAR(grp_ncid ,varID ,input_smoke))

– set scm_input%input_smoke = input_smoke
• Interpolate the input values to the model grid. Edit

gmtb_scm_setup.f90/set_state:
– Add a loop over the columns to call interpolate_to_grid_centers that

puts input_smoke on grid levels in scm_state%state_tracer

do i=1, scm_state%n_cols
call interpolate_to_grid_centers(scm_input%

input_nlev , scm_input%input_pres , scm_input%
input_smoke , scm_state%pres_l(i,1,:), &
scm_state%n_levels , scm_state%state_tracer(i

,1,:, scm_state%smoke_index ,1),
last_index_init , 1)

end do

• At this point, you have a new tracer initialized to values specified in the input
file on the model vertical grid, but it is not connected to any physics or changed
by any forcing.

3. For these instructions, we’ll assume that the tracer is not subject to any external
forcing (e.g., horizontal advective forcing, sources, sinks). If it is, further work is
required to:

• One needs to provide data on how tracer is forced in the input file, similar to
specifying its initial state, as above.

• Create, allocate, and read in the new variable for forcing (similar to above).
• Add to interpolate_forcing (similar to above, but interpolates the forcing to

the model grid and model time).
• Add statements to time loop to handle the first time step and different time-

advancing schemes.
• Edit apply_forcing_forward_Euler and apply_forcing_leapfrog in

gmtb-scm/scm/src/gmtb_scm_forcing.f90.
4. In order to connect the new tracer to the CCPP physics, perform steps 1-4 in

section 6.4.1 for adding a physics variable. In addition, do the following in order
to associate the scm_state variable with variables used in the physics through a
pointer:

• Point the new physics variable to scm_state%state_tracer(:,:,:,scm_state%smoke_index)
in gmtb-scm/scm/src/gmtb_scm_type_defs.f90/physics_associate.

5. There may be additional steps depending on how the tracer is used
in the physics and how the physics scheme is integrated with the
current GFS physics suite. For example, the GFS physics has two
tracer arrays, one for holding tracer values before the physics timestep
(gmtb-scm/scm/src/GFS_typedefs.F90/GFS_statein_type/qgrs) and one
for holding tracer values that are updated during/after the physics
(gmtb-scm/scm/src/GFS_typedefs.F90/GFS_stateout_type/gq0). If the tracer
needs to be part of these arrays, there are a few additional steps to take.

38

	Preface
	1 Introduction
	1.1 Version Notes
	1.1.1 Limitations

	2 Quick Start Guide
	2.1 Obtaining Code
	2.1.1 Release Code
	2.1.2 Development Code

	2.2 System Requirements, Libraries, and Tools
	2.2.1 Compilers
	2.2.2 Installing Libraries on Supported Platforms
	2.2.3 Using Existing Libraries on Preconfigured Platforms

	2.3 Compiling SCM with CCPP
	2.4 Run the SCM with a supplied case
	2.4.1 Single Run Script Usage
	2.4.2 Multiple Run Script Usage
	2.4.3 Batch Run Script

	2.5 Creating and Using a Docker Container with SCM and CCPP
	2.5.1 Building the Docker image
	2.5.2 Using a prebuilt Docker image from Dockerhub
	2.5.3 Running the Docker image

	3 Repository
	3.1 What is included in the repository?

	4 Algorithm
	4.1 Algorithm Overview
	4.2 Reading input
	4.3 Setting up vertical grid and interpolating input data
	4.4 Physics suite initialization
	4.5 Time integration
	4.6 Writing output

	5 Cases
	5.1 How to run cases
	5.1.1 Case configuration namelist parameters
	5.1.2 Case input data file

	5.2 Included Cases
	5.3 How to set up new cases
	5.4 Using other LASSO cases
	5.5 Using UFS Initial Conditions

	6 CCPP Interface
	6.1 Setting up a suite
	6.1.1 Preparing data from the SCM
	6.1.2 Editing and running ccpp_prebuild.py
	6.1.3 Preparing a suite definition file

	6.2 Initializing/running a suite
	6.3 Changing a suite
	6.3.1 Replacing a scheme with another
	6.3.2 Modifying ``groups'' of parameterizations
	6.3.3 Subcycling parameterizations

	6.4 Adding variables
	6.4.1 Adding a physics-only variable
	6.4.2 Adding a prognostic SCM variable

