CCPP Scientific Documentation
v5.0.0
Bibliography
[1]

H. Abdul-Razzak and S. J. Ghan. A parameterization of aerosol activation: 2. multiple aerosol types. Journal of Geophysical Research: Atmospheres, 105(D5):6837–6844, 2000.

[2]

M. J. Alexander and T. J. Dunkerton. A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the Atmospheric Sciences, 56(24):4167–4182, 1999.

[3]

M. J. Alexander, M. Geller, C. McLandress, and et al. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 136(650):1103–1124, 2010.

[4]

J. C. Alpert, M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay. Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. pages 726–733, Baltimore, MD, 1988. Eighth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc.

[5]

J. C. Alpert, V. A. Yudin, and E. Strobach. Atmospheric gravity wave sources correlated with resolved-scale gw activity and sub-grid scale parameterization in the fv3gfs model. In AGU Fall Meeting 2019. AGU, 2019.

[6]

T. K. Andersen and J. M. Shepherd. A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. International Journal of Climatology, 34:391–402, 2014.

[7]

A. Arakawa and W. H. Schubert. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31:674–701, 1974.

[8]

A. Arakawa and C.-M. Wu. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. Journal of the Atmospheric Sciences, 70(7):1977–1992, Jul 2013.

[9]

A. Arakawa and C.-M. Wu. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70:1977–1992, 2013.

[10]

A. Arakawa, J.-H. Jung, and C.-M. Wu. Toward unification of the multiscale modeling of the atmosphere. Atmospheric Chemistry and Physics, 11(8):3731–3742, Apr 2011.

[11]

P. G. Baines and T. N. Palmer. Rationale for a new physically based parametrization of sub-grid scale orographic effects. Technical Memorandum 169, European Centre for Medium Range Weather Forecasts, 1990.

[12]

M. Baldwin, R. Treadon, and S. Contorno. Precipitation type prediction using a decision tree approach with NMC's mesoscale Eta model. In Preprints. 10th Conf. on Numerical Weather Prediction, pages 30–31, Portland, OR, 1994. Amer. Meteor. Soc.

[13]

D. Barahona and A. Nenes. Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation. Journal of Geophysical Research, 113(D11), Jun 2008.

[14]

D. Barahona and A. Nenes. Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei. Atmospheric Chemistry and Physics, 9(2):369–381, Jan 2009.

[15]

D. Barahona, A. Molod, J. Bacmeister, and et al. Development of two-moment cloud microphysics for liquid and ice within the nasa goddard earth observing system model (GEOS-5). Geoscientific Model Development, 7(4):1733–1766, Aug 2014.

[16]

P. Bechtold, M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634):1337–1351, 2008.

[17]

P. Bechtold, N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann. Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71:734–753, 2014.

[18]

S. G. Benjamin, D. Dévényi, S. S. Weygandt, K. J. Brundage, J. M. Brown, G. A. Grell, D. Kim, B. E. Schwartz, T. G. Smirnova, T. L. Smith, and et al. An hourly assimilation–forecast cycle: The RUC. Monthly Weather Review, 132(2):495–518, Feb 2004.

[19]

S. G. Benjamin, G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck. Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Monthly Weather Review, 132(2):473–494, Feb 2004.

[20]

S. G. Benjamin, J. M. Brown, and T. G. Smirnova. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Weather and Forecasting, 31(2):609–619, Apr 2016.

[21]

S. G. Benjamin, S. S. Weygandt, J. M. Brown, M. Hu, C. R. Alexander, T. G. Smirnova, J. B. Olson, E. P. James, D. C. Dowell, G. A. Grell, and et al. A north american hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144(4):1669–1694, Apr 2016.

[22]

E. H. Berbery, K. E. Mitchell, S. Benjamin, T. Smirnova, H. Ritchie, R. Hogue, and E. Radeva. Assessment of land-surface energy budgets from regional and global models. Journal of Geophysical Research: Atmospheres, 104(D16):19329–19348, Aug 1999.

[23]

E. X. Berry. Modification of the warm rain process. In Am. Meteorol. Soc., editor, 1st National Conference on Weather Modification, Albany, N.Y, 1968.

[24]

A. K. Betts, A. B. Tawfik, and R. L. Desjardins. Revisiting hydrometeorology using cloud and climate observations. J. Hydrometeorol., 18(939-955), 2017.

[25]

P. Bourgouin. A method to determine precipitation types. Weather and Forecasting, 15:583–592, October 2000.

[26]

B. P. Briegleb. Delta-eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97:7603–7612, 1992.

[27]

V. Buchard, C. A. Randles, A. M. da Silva, and et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30:6851–6872, 2017.

[28]

J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28:181–189, 1971.

[29]

J.-P. Chaboureau and P. Bechtold. A simple cloud parameterization derived from cloud resolving model data: Diagnostic and prognostic applications. Journal of the Atmospheric Sciences, 59(15):2362–2372, Aug 2002.

[30]

J.-H. Chen and S.-J. Lin. The remarkable predictability of inter-annual variability of atlantic hurricanes during the past decade. Geophysical Research Letters, 38(L11804):6, 2011.

[31]

J.-H. Chen and S.-J. Lin. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26(2):380–398, 2013.

[32]

F. Chen, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.-Y. Duan, M. Ek, and A. Betts. Modeling of land-surface evaporation by four schemes and comparison with observations. J. Geophys. Res., 101(D3):7251–7268, 1996.

[33]

F. Chen, Z. Janjic, and K. Mitchell. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology, 85(3):391–421, 1997.

[34]

M. Chikira and M. Sugiyama. A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. Journal of the Atmospheric Sciences, 67(7):2171–2193, Jul 2010.

[35]

M. Chin, R. B. Rood, S-J. Lin, J-F. Muller, and A. M. Thompson. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105(D20):24671–24687, October 2000.

[36]

M. D. Chou and M. J. Suarez. A solar radiation parameterization for atmospheric studies. Technical Memorandum 15, NASA, 1999.

[37]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J.S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91:233–244, 2005.

[38]

P. Colarco, A. da Silva, M. Chin, and T. Diehl. Online simulations of global aerosol distributions in the NASA GOES-4 model and comparisons to satellite and ground-based aerosol optical depth. Journal of Geophysical Research, 115(D14207):25, 2010.

[39]

M. Deng and G. G. Mace. Cirrus cloud microphysical properties and air motion statistics using cloud radar Doppler moments: water content, partical size, and sedimentation relationships. Geophysical Research Letters, 35(L17808), 2008.

[40]

J. C. Derber and W.-S. Wu. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Monthly Weather Review, 126:2287–2299, 1998.

[41]

A. Dethof and E. V. Holm. Ozone assimilation in the ERA-40 reanalysis project. Quarterly Journal of the Royal Meteorological Society, 130:2851–2872, 2004.

[42]

A. S. Donahue and P. M. Caldwell. Impact of physics parameterization ordering in a global atmosphere model. Journal of Advances in Modeling Earth Systems, (10.1002/2017MS001067):481–499, 2018.

[43]

E. E. Ebert and J. A. Curry. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97:3831–3836, 1992.

[44]

S. D. Eckermann, K. W. Hoppel, L. Coy, J. P. McCormack, D. E. Siskind, K. Nielsen, A. Kochenash, M. H. Stevens, C. R. Englert, W. Singer, and M. Hervig. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. Journal of Atmospheric and Solar-Terrestrial Physics, 71(3):531 – 551, 2009. Global Perspectives on the Aeronomy of the Summer Mesopause Region.

[45]

S. D. Eckermann. Explicitly stochastic parameterization of nonorographic gravity wave drag. Journal of the Atmospheric Sciences, 68(8):1749–1765, 2011.

[46]

M. B. Ek and A. A. M. Holtslag. Influence of soil moisture on boundary layer cloud development. J. Hydrometeorol., 5:86–99, 2004.

[47]

M. B. Ek and L. Mahrt. Daytime evolution of relative-humidity at the boundary-layer top. Monthly Weather Review, 122:2709–2721, 1994.

[48]

M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108(D22):8851, 2003.

[49]

M. Ern, Q. T. Trinh, P. Preusse, J. C. Gille, M. G. Mlynczak, J. M. Russell III, and M. Riese. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth System Science Data, 10(2):857–892, 2018.

[50]

R. Essery, N. Rutter, J. Pomeroy, and et al. SNOWMIP2: An evaluation of forest snow process simulations. Bulletin of the American Meteorological Society, 90(8):1120–1136, 2009.

[51]

P. Etchevers, E. Martin, R. Brown, and et al. Validation of the energy budget of an alpine snowpack simulated by several snow models (snow MIP project). Annals of Glaciology, 38:150–158, 2004.

[52]

C. W. Fairall, E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101(C1):1295–1308, 1996.

[53]

Y. Fan, G. Miguez-Macho, C. P. Weaver, R. Walko, and A. Robock. Incorporating water table dynamics in climate modeling: 1. water table observations and equilibrium water table simulations. Journal of Geophysical Research, 112(D10125), 2007.

[54]

K. L. Findell, A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello, Jr. Shevliakova, and E. Shevliakova. The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications, 8(989), 2017.

[55]

C. Fountoukis. Continued development of a cloud droplet formation parameterization for global climate models. Journal of Geophysical Research, 110(D11), 2005.

[56]

S. R. Freitas, G. A. Grell, A. Molod, and et al. Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system. Journal of Advances in Modeling Earth Systems, 10:1266–1289, 2018.

[57]

J. M. Fritsch and C. F. Chappell. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. Journal of the Atmospheric Sciences, 37(8):1722–1733, 1980.

[58]

D. C. Fritts. Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22:275–308, 1984.

[59]

Q. Fu, P. Yang, and W. B. Sun. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11:2223–2237, 1998.

[60]

Q. Fu. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9:2058–2082, 1996.

[61]

R. R. Garcia, D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi. Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research: Atmospheres, 112(D9), 2007.

[62]

R. R. Garcia, A. K. Smith, D. E. Kinnison, Á. Cámara, and D. J. Murphy. Modification of the gravity wave parameterization in the whole atmosphere community climate model: Motivation and results. Journal of the Atmospheric Sciences, 74(1):275–291, 2017.

[63]

M. Gehne, T. M. Hamill, G. T. Bates, P. Pegion, and W. Kolczynski. Land surface parameter and state perturbations in the global ensemble forecast system. Monthly Weather Review, 147(4):1319–1340, Apr 2019.

[64]

R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, and et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14):5419–5454, 2017.

[65]

M. A. Geller, M. J. Alexander, P. T. Love, and et al. A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17):6383–6405, 2013.

[66]

A. Gettelman and H. Morrison. Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. Journal of Climate, 28(3):1268–1287, Feb 2015.

[67]

A. Gettelman, X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.-L. F. Li. Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. Journal of Geophysical Research, 115(D18), Sep 2010.

[68]

A. Gettelman, H. Morrison, S. Santos, P. Bogenschutz, and P. M. Caldwell. Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. Journal of Climate, 28(3):1288–1307, Feb 2015.

[69]

A. Gettelman, H. Morrison, K. Thayer-Calder, and C. M. Zarzycki. The impact of rimed ice hydrometeors on global and regional climate. Journal of Advances in Modeling Earth Systems, 2019.

[70]

D. Gregory. Estimation of entrainment rate in simple models of convective clouds. Quarterly Journal of the Royal Meteorological Society, 127(571):53–72, Jan 2001.

[71]

G. A. Grell and D. Dévényi. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14):38–1--38–4, Jul 2002.

[72]

G. A. Grell and S. R. Freitas. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14:5233–5250, 2014.

[73]

G. A. Grell. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3):764–787, 2016/03/25 1993.

[74]

B. P. Guillod, B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 6(6443), 2015.

[75]

J. Han and C. S. Bretherton. TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Weather and Forecasting, accepted, 2019.

[76]

J. Han and H.-L. Pan. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Monthly Weather Review, 134(2):664–674, 2006.

[77]

J. Han and H.-L. Pan. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather and Forecasting, 26(4):520–533, 2016/03/25 2011.

[78]

J. Han, M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton. Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting, 31(1):341–352, Feb 2016.

[79]

J. Han, W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang. Updates in the NCEP GFS cumulus convective schemes with scale and aerosol awareness. Weather and Forecasting, 32:2005–2017, 2017.

[80]

M. Hess, P. Koepke, and I. Schult. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteor. Soc., 79:831–844, 1998.

[81]

A. J. Heymsfield and L. J. Donner. A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47(15):1865–1877, 1990.

[82]

A. J. Heymsfield and G. M. McFarquhar. High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53:2424–2451, 1996.

[83]

C. O. Hines. Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part II: Broad and quasi monochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4):387 – 400, 1997.

[84]

A. L. Hirsch, A. J. Pitman, J. Kala, R. Lorenz, and M. G. Donat. Modulation of land-use change impacts on temperature extremes via land-atmosphere coupling over Australia. Earth Interactions, 19(12):1–24, 2015.

[85]

P. V. Hobbs. High concentrations of ice particles in a layer cloud. Nature, 251(5477):694–696, Oct 1974.

[86]

J. R. Holton. The influence of gravity wave breaking on the general circulation of the middle atmosphere. Journal of the Atmospheric Sciences, 40(10):2497–2507, 1983.

[87]

S.-Y. Hong and H.-L. Pan. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10):2322–2339, 1996.

[88]

S-Y. Hong, J. Dudhia, and S.-H. Chen. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132:103–120, 2004.

[89]

Y. Hou, S. Moorthi, and K. Campana. Parameterization of solar radiation transfer. office note 441, NCEP, 2002.

[90]

H. Hsu, M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar. Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122:6319–6328, 2017.

[91]

Y. X. Hu and K. Stamnes. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6:728–742, April 1993.

[92]

M. J. Iacono, E. J. Mlawer, S. A. Clough, and J.-J. Morcrette. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105:14873–14890, 2000.

[93]

M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, 2008.

[94]

D. R. Jackson and R. Saunders. Ozone data assimilation: preliminary system. Forecasting Research Technical Report 394, Met Office, 2002.

[95]

H-L. Jiang, G. Feingold, and A. Sorooshian. Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. Journal of the Atmospheric Sciences, 67(11):3525–3540, Nov 2010.

[96]

V. O. John and S. A. Buehler. The impact of ozone lines on AMSU-B radiances. Geophysical Research Letters, 31, 2004.

[97]

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. The Delta-Eddington approximation for radiative flux transfer. Journal of the Atmospheric Sciences, 33:2452–2459, 1976.

[98]

J.R. Key. Streamer user's guide.

[99]

Y.-J. Kim and A. Arakawa. Improvement of orographic gravity wave parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52:1875–1902, 1995.

[100]

V. Koren, J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. Baker. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104(D16):19569–19585, 1999.

[101]

R. D. Koster, Y. Chang, and S. D. Schubert. A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27:9290–9301, 2014.

[102]

G. Krinner, C. Derksen, R. Essery, and et al. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11(12):5027–5049, Dec 2018.

[103]

S. K. Krueger, Q. Fu, K. N. Liou, and H.-N. S. Chin. Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34:281–287, January 1995.

[104]

X. Li and J. Derber. Near sea surface temperatures (nsst) analysis in ncep gfs.

[105]

X. Li. The development of the nsst within the ncep gfs/cfs.

[106]

K.-S. S. Lim. Investigation of aerosol indirect effects on simulated moist convections.. PhD thesis, Yonsei University, Seoul, South Korea, 2011.

[107]

Y.-L. Lin, R. D. Farley, and H. D. Orville. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22:1065–1092, 1983.

[108]

S-J. Lin, W. C. Chao, Y. C. Sud, and G. K. Walker. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model. Monthly Weather Review, 122:1575–1593, 1994.

[109]

R. S. Lindzen. Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86:9707–9714, 1981.

[110]

K. N. Liou. A numerical experiment on Chandrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. Journal of the Atmospheric Sciences, 30:1303–1326, 1973.

[111]

A. P. Lock, A. R. Brown, M. R. Bush, G. M. Martin, and R.N.B. Smith. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128:3187–3199, 2000.

[112]

P. J. Long. An general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Office Note 302, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1984.

[113]

P. J. Long. An economical and compatible scheme for parameterizing the stable surface layer in the medium-range forecast model. Office Note 321, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1986.

[114]

S. J. Lord, H. E. Willoughby, and J. M. Piotrowicz. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41(19):2836–2848, October 1984.

[115]

F. Lott and M. J. Miller. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quarterly Journal of the Royal Meteorological Society, 123:101–127, 1997.

[116]

F. Lott, L. Guez, and P. Maury. A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere. Geophysical Research Letters, 39(6), 2012.

[117]

J. F. Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17:187–202, 1979.

[118]

L-F. Luo, A. Robock, K. Y. Vinnikov, and et al. Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia. Journal of Hydrometeorology, 4(2):334–351, Apr 2003.

[119]

M. K. MacVean and P. J. Mason. Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. Journal of the Atmospheric Sciences, 47(8):1012–1030, 1990.

[120]

J. P. McCormack, S. D. Eckermann, D. E. Siskind, and T. J. McGee. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6:4943–4972, 2006.

[121]

J. P. McCormack, K. W. Hoppel, and D. E. Siskind. Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation. Atmos. Chem. Phys., 8:7519–7532, 2008.

[122]

G. L. Mellor and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7):1791–1806, Oct 1974.

[123]

G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4):851, 1982.

[124]

G. Miguez-Macho, Y. Fan, C. P. Weaver, R. Walko, and A. Robock. Incorporating water table dynamics in climate modeling: 2. formulation, validation, and soil moisture simulation. Journal of Geophysical Research, 112(D13108), 2007.

[125]

J. Milovac, K. Warrach-Sagi, A. Behrendt, F. Spath, J. Ingwersen, and V. Wulfmeryer. Investigation of PBL schemes combining the WRF model simulations with scanning waver vapor differential absorption lidar measurements. J. Geophys. Res. Atmos., 121:624–649, 2016.

[126]

K. Miyakoda and J. Sirutis. Manual of the E-physics. Princeton University Press, 1986.

[127]

E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough. Radiative transfer for inhomogenerous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(16663-16682), 1997.

[128]

A. Molod, L. Takacs, M. Suarez, and J. Bacmeister. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific Model Development, 8(5):1339–1356, 2015.

[129]

S. Moorthi and M.J. Suarez. Relaxed Arakawa-Schubert. a parameterization of moist convection for general circulation models. Monthly Weather Review, 120:978–1002, 1992.

[130]

H. Morrison and A. Gettelman. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21(15):3642–3659, Aug 2008.

[131]

M. Nakanish. Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorology, 99(3):349–378, Jun 2001.

[132]

M. Nakanishi and H. Niino. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorology, 112(1):1–31, Jul 2004.

[133]

M. Nakanishi and H. Niino. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119(2):397–407, Mar 2006.

[134]

M. Nakanishi and H. Niino. Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan, 87(5):895–912, 2009.

[135]

M. Nakanishi. Large-eddy simulation of radiation fog. Boundary-Layer Meteorology, 94:461–493, 2000.

[136]

A. Nenes. Parameterization of cloud droplet formation in global climate models. Journal of Geophysical Research, 108(D14), 2003.

[137]

J. W. Nielsen-Gammon, C. L. Powell, M. J. Mahoney, and et al. Multisensor estimation of mixing heights over a coastal city. Journal of Applied Meteorology and Climatology, 47(1):27–43, 2008.

[138]

G.-Y. Niu and Z.-L. Yang. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7(5):937–952, 2006.

[139]

G.-Y. Niu, Z.-L Yang, R. E. Dickinson, and L. E. Gulden. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Climate and Dynamics, 110(D21106), 2005.

[140]

G.-Y. Niu, Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su. Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. Journal of Geophysical Research: Atmospheres, 112(D7), 2007.

[141]

G.-Y. Niu, Z.-L. Yang, K. E. Mitchell, and et al. The community noah land surface model with multiparameterization options (Noah-MP): 1. model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres, 116(D12), 2011.

[142]

J. B. Olson and J. M. Brown. A comparison of two mellow-yamada-based pbl schemes in simulating a hybrid barrier jet. In 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, number JP1.13, Omaha, Nebraska, 2009. Amer. Meteor. Soc.

[143]

J. B. Olson, J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Suselj. A description of the MYNN-EDMF scheme and the coupling to other components in WRF-ARW. Technical memorandum, NOAA OAR GSD-61, March 2019.

[144]

D. PaiMazumder and J. M. Done. Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble. J. Geophys. Res. Atmos., 121:12581–12592, 2016.

[145]

H.-L. Pan and W.-S. Wu. Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, page 40pp, 1995.

[146]

C.A. Paulson and J.J. Simpson. The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86(C11):2156–2202, 1981.

[147]

C. D. Peters-Lidard, M. S. Zion, and E. F. Wood. A soil-vegetation-atmosphere transfer sheme for modeling spatially variable water and energy balance processes. J. Geophys. Res., 102(D4):4303–4324, 1997.

[148]

C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55:1209–1224, 1998.

[149]

Y. L. Pichugina, S. C. Tucker, R. M. Banta, and et al. Horizontal-velocity and variance measurements in the stable boundary layer using doppler lidar: Sensitivity to averaging procedures. Journal of Atmospheric and Oceanic Technology, 25(8):1307–1327, 2008.

[150]

R. T. Pierrehumbert. An essay on the parameterization of orographic wave drag. observation, theory, and modelling of orographic effects. In Seminar/Workshop on Observation, Theory and Modelling of Orographic effect. Seminar: 15-19 September 1986, Workshop: 19-20 September 1986, volume 1, pages 251–282. ECMWF, ECMWF, 1986.

[151]

R. Plougonven and F. Zhang. Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics, 52(1):33–76, 2014.

[152]

J. Ramer. An empirical technique for diagnosing precipitation type from model output. In Preprints. Fifth Int. Conf. on Aviation Weather Systems, pages 227–230, Vienna, VA, 1993. Amer. Meteor. Soc.

[153]

C. A. Randles, A. M. da Silva, V. Buchard, and et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30:6823–6850, 2017.

[154]

J. H. Richter, F. Sassi, and R. R. Garcia. Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67(1):136–156, 2010.

[155]

J. H. Richter, A. Solomon, and J. T. Bacmeister. Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. Journal of Advances in Modeling Earth Systems, 6(2):357–383, 2014.

[156]

L. P. Riishojgaard. On four-dimensional variational assimilation of ozone data in weather-prediction models. Quarterly Journal of the Royal Meteorological Society, 122:1545–1571, 1996.

[157]

S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41(20):2949–2972, 1984.

[158]

N. Rutter, R. Essery, J. Pomeroy, and et al. Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 114(D6), Mar 2009.

[159]

M. Sato, J. E. Hansan, M. P. McCormick, and J. B. Pollack. Stratospheric aerosol optical depth, 1985-1990. J. Geophys. Res., 98(D12):22987–22994, 1993.

[160]

C. A. Schlosser, A. Robock, K. Y. Vinnikov, N. A. Speranskaya, and Y.-K. Xue. 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Monthly Weather Review, 125(12):3279–3296, Dec 1997.

[161]

J. F. Scinocca. An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. Journal of the Atmospheric Sciences, 60(4):667–682, 2003.

[162]

T. A. Shaw and T. G. Shepherd. A theoretical framework for energy and momentum consistency in subgrid-scale parameterization for climate models. Journal of the Atmospheric Sciences, 66(10):3095–3114, 2009.

[163]

A. P. Siebesma, P. M. M. Soares, and J. Teixeira. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64(4):1230–1248, Apr 2007.

[164]

A. P. Siebesma, P. M. M. Soares, and J. Teixeira. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64:1230–1248, 2007.

[165]

A. G. Slater, C. A. Schlosser, C. E. Desborough, and et al. The representation of snow in land surface schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2(1):7–25, Feb 2001.

[166]

T. G. Smirnova, J. M. Brown, and S. G. Benjamin. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review, 125(8):1870–1884, Aug 1997.

[167]

T. G. Smirnova, J. M. Brown, S. G. Benjamin, and D. Kim. Parameterization of cold-season processes in the MAPS land-surface scheme. Journal of Geophysical Research: Atmospheres, 105(D3):4077–4086, 2000.

[168]

T. G. Smirnova, J. M. Brown, S. G. Benjamin, and J. S. Kenyon. Modifications to the rapid update cycle land surface model (RUC LSM) available in the Weather Research and Forecasting (WRF) model. Monthly Weather Review, 144(5):1851–1865, May 2016.

[169]

P. M. M. Soares, P. M. A. Miranda, A. P. Siebesma, and J. Teixeira. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quarterly Journal of the Royal Meteorological Society, 130(604):3365–3383, 2004.

[170]

A. V. Soloviev and N. V. Vershinsky. The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep Sea Research Part A. Oceanographic Research Papers, 29(12):1437–1449, 1982.

[171]

G. Thompson and T. Eidhammer. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of the Atmospheric Sciences, 71(10):3636–3658, Oct 2014.

[172]

G. Thompson, R. M. Rasmussen, and K. Manning. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, 132(2):519–542, Feb 2004.

[173]

G. Thompson, P. R. Field, R. M. Rasmussen, and W. D. Hall. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12):5095–5115, Dec 2008.

[174]

I. B. Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2):129–148, 1986.

[175]

A. Untch, A. J. Simmons, M. Hortal, and C. Jakob. Increased stratospheric resolution in the ECMWF forecasting system. In Proceedings of the SODA Workshop, pages 45–52. Netherlands, 1999.

[176]

D. Vickers and L. Mahrt. Evaluating formulations of stable boundary layer height. Journal of Applied Meteorology, 43(11):1736–1749, Nov 2004.

[177]

J. Weinstock. Simplified derivation of an algorithm for nonlinear gravity waves. Journal of Geophysical Research: Space Physics, 89(A1):345–350, 1984.

[178]

M. Winton. A reformulated three-layer sea ice model. J. Atmos. Oceanic Tech., 17:525–531, 2000.

[179]

World Meteorological Organization. WMO greenhouse gas bulletin, number 13, October 2017 2017.

[180]

International Snow Science Workshop, editor. Snow MIP, and intercomparson of snow-cover models: first results, Victoria, B.C., 29 September-4 October 2002. B.C. Ministry of Transportation. Snow Avalance Programs, In Stevens, J.R.

[181]

K.-M. Xu and D. A. Randall. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21):3084, 3102 1996.

[182]

V. A. Yudin, R. A. Akmaev, T. J. Fuller-Rowell, and J. C. Alpert. Gravity wave physics in the NOAA environmental modeling system. In International SPARC Gravity Wave Symposium, volume 48, page 012024, 2016.

[183]

V. A. Yudin, R. A. Akmaev, J. C. Alpert, Fuller-Rowell T. J., and Karol S. I. Gravity wave physics and dynamics in the FV3-based atmosphere models extended into the mesosphere. In Am. Meteorol. Soc., editor, 25th Conference on Numerical Weather Prediction, 2018.

[184]

V. A. Yudin, S. I. Karol, R. A. Akmaev, and et al. Longitudinal variability of wave dynamics in weather models extended into the mesosphere and thermosphere. In Space Weather Workshop, 2019.

[185]

W. G. Zdunkowski, R. M. Welch, and G. Korb. An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Beitr. Phys. Atmos., 53:147–166, 1980.

[186]

X. Zeng and A. Beljaars. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophysical Research Letters, 32(14):1–4, 2005.

[187]

X. Zeng and R. E. Dickinson. Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11:537–550, 1998.

[188]

X. Zeng, M. Zhao, and R. E. Dickinson. Intercomparison of bulk aerodynamic algorithm for the comutation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11:2628–2644, 1998.

[189]

G. J. Zhang and X. Q. Wu. Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. Journal of the Atmospheric Sciences, 60(9):1120–1139, 2003.

[190]

W. Zheng, H. Wei, J. Meng, M. Ek, K. Mitchell, J. Derber, X. Zeng, and Z. Wang. Improvement of land surface skin temperature in NCEP operational NWP models and its impact on satellite data assimilation. Omaha, Nebraska, 2009. The 23rd Conference on Weather Analysis and Forecasting (WAF)/19th Conference on Numerical Weather Prediction(NWP).

[191]

W. Zheng, H. Wei, Z. Wang, X. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber. Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res., 117(D06117), 2012.

[192]

W. Zheng, M. Ek, K. Mitchell, H. Wei, and J. Meng. Improving the stable surface layer in the NCEP Global Forecast System. Monthly Weather Review, 145:3969–3987, 2017.

[193]

L.-J. Zhou, S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees. Toward convective-scale prediction within the next generation global prediction system. Bulletin of the American Meteorological Society, pages 1225–1243, 2019.