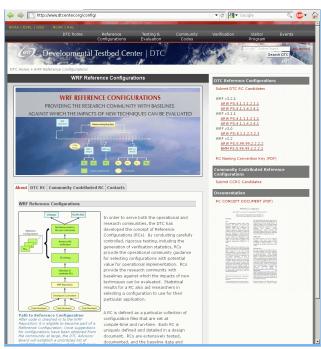
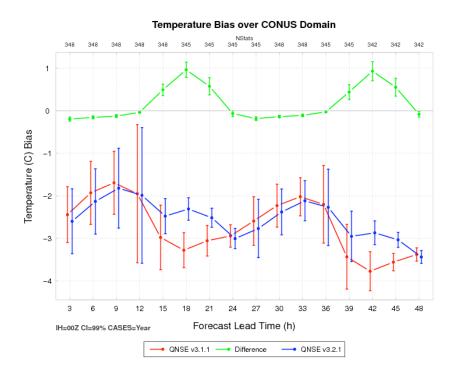
Testing and Evaluation of WRF Reference Configurations

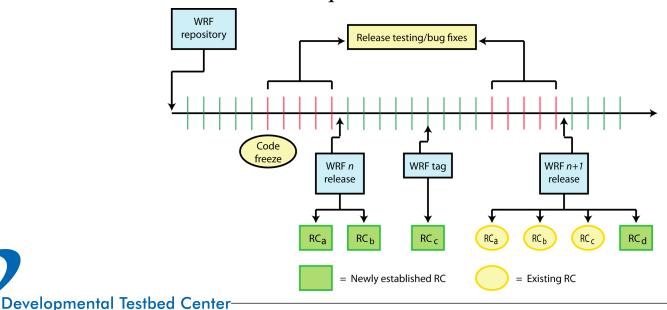
Michelle Harrold, Jamie Wolff, Zach Trabold, and Louisa Nance


National Center for Atmospheric Research (NCAR)

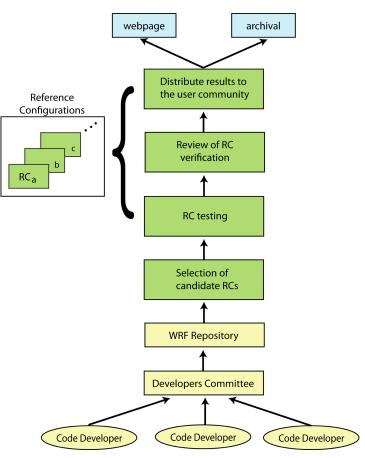

12th Annual WRF User's Workshop 22 June 2011

Overview

- Description of Reference Configuration (RC) concept and the function of the Developmental Testbed Center (DTC) in RC efforts
- Verification results from two WRF-ARW configurations tested with version 3.1.1 and version 3.2.1



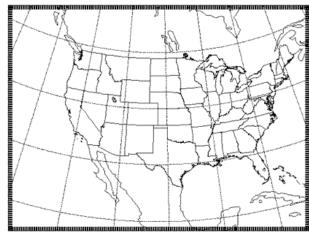
RC Description


RC Concept

- Concept: Rigorously test and evaluate select WRF configurations
- Goal: Provide well-documented baseline verification results for specific configurations of WRF that are broadly distributed to the numerical weather prediction community
- Beneficial to both the operational and research communities

RC Concept: Function of the DTC

- The Developmental Testbed Center
 - Establishes RCs, performs testing and evaluation, and disseminates results
 - Runs end-to-end system and generate verification results using appropriate verification techniques
 - Retest relevant RCs based on latest WRF release
 - Solicits and facilitates input from user community for Community Contributed Reference Configurations (CCRCs)



RC Testing & Evaluation

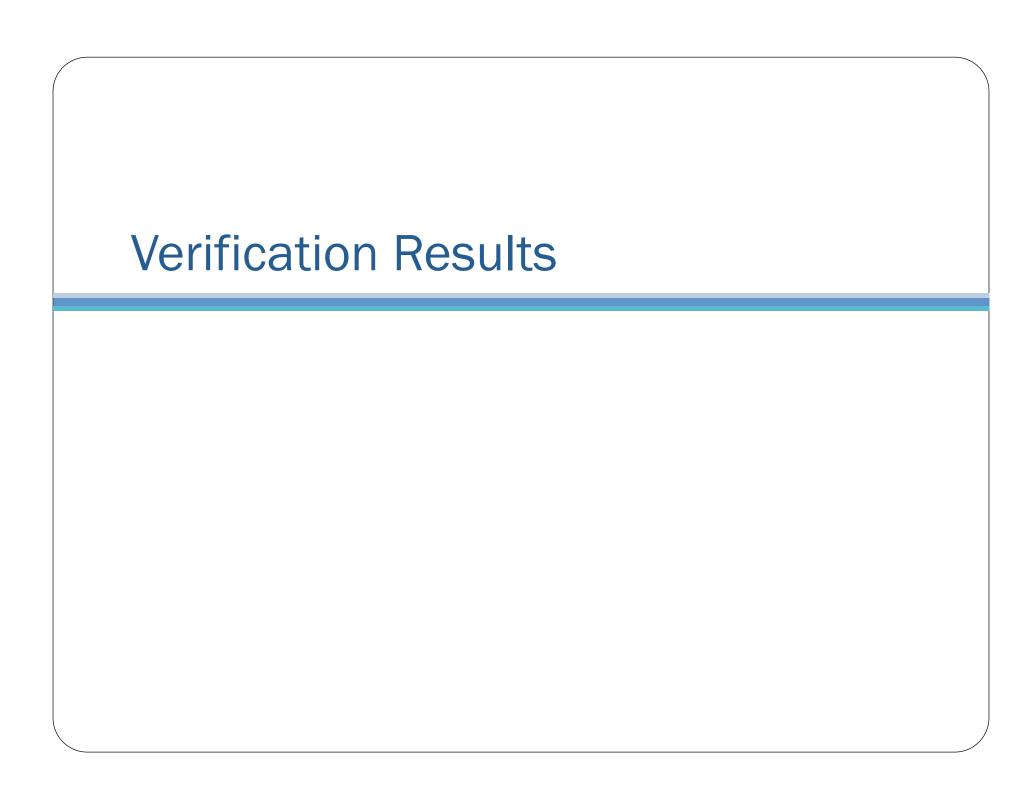
Experiment Design

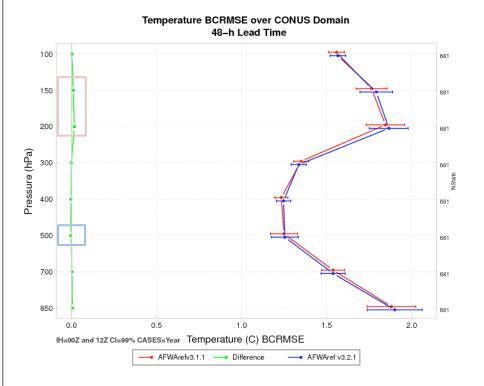
- End-to-end system: WPS, WRF, WPP, and MET (v3.0.1)
- Test Period: 2 June 2008 31 May 2009
- Retrospective forecasts: 48-h forecasts initialized every 36 h
- Domain: 15-km CONUS grid
- Physics suite for each configuration:

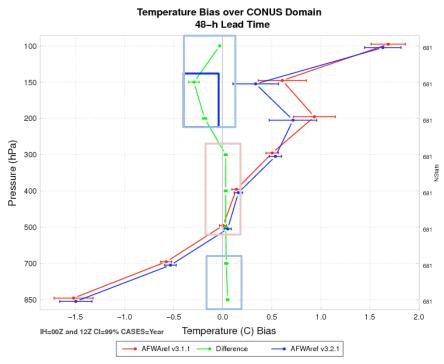
WRF-ARW computational domain

Physics Suite	AFWA Configuration	QNSE-replacement Configuration				
Microphysics	WRF Single-Moment 5	WRF Single-Moment 5				
Radiation (SW/LW)	Dudhia/RRTM	Dudhia/RRTM				
Surface Layer	Monin-Obukhov similarity theory	Quasi-Normal Scale Elimination				
Land Surface Model	Noah	Noah				
PBL	Yonsei University	Quasi-Normal Scale Elimination				
Convection	Kain-Fritsch	Kain-Fritsch				

Model Verification


- Verification stratifications include temporal and spatial aggregations
- Grid-to-point verification for surface and upper-air temperature, dew point temperature, winds
 - Bias-corrected root mean square error (BCRMSE) and mean error (bias)
- Grid-to-grid verification for 3-h and 24-h QPF
 - Gilbert Skill Score (GSS) and frequency bias
- Confidence intervals (CIs) computed at the 99% level
- Pair-wise difference technique applied by computing difference between versions (v3.2.1 v3.1.1)


Verification domain


Establishing Significance

- Identified statistically significant (SS) differences between configurations as well as practically significant (PS) differences
 - Large dataset increases number of pair-wise differences not always practically meaningful
 - SS: Objectively determined by using pair-wise difference technique
 - PS: Censored data to highlight pair-wise differences greater than a specified value
 - WMO requirements for operational measurement uncertainty: $T/T_{\rm d} > 0.1~K, {\rm wind} > 0.5~{\rm ms}^{\text{-}1}, {\rm and~precip.~accumulation} > 0.1~{\rm mm}$

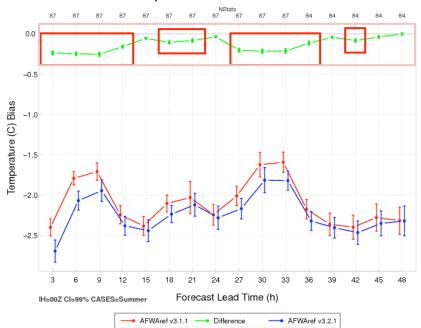
AFWA: Upper Air Temperature

Upper Air SS/PS Tables

SS (light shading) and **PS (dark shading)** differences for the annual aggregation of upper air temperature, dew point temperature, and wind *BCRMSE* and *bias*

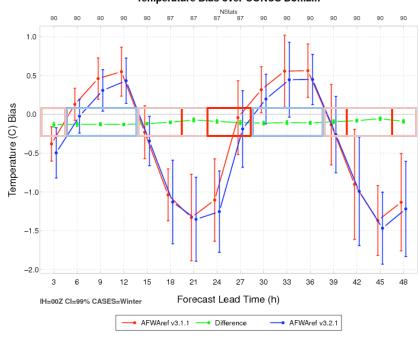
AFWA: v3.2.1 - v3.1.1

QNSE: v3.2.1 - v3.1.1


							Anr	ıual								
			Tempe	rature		Dew l	Point T	emper	ature	Wind						
		f12	f24	f36	f48	f12 f24 f36 f48				f12	f24	f36	f48			
Γ	850					v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.1.1		v3.1.1			
ı	700			v3.1.1		v3.1.1	v3.1.1	v3.1.1								
_{ES}	500	1	1		v3.2.1					v3.2.1	1		v3.2.1			
MS	400	1	1								1		v3.2.1			
BCRMSE	300	v3.1.1	v3.1.1					v3.2.1								
ľ	200	v3.1.1	v3.1.1	v3.1.1	v3.1.1						1					
i	150	v3.1.1	v3.1.1	v3.1.1	v3.1.1					v3.2.1	1	-				
L	100	-	1							v3.2.1	v3.2.1					
Г	850	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1				v3.2.1	v3.1.1	v3.2.1	v3.1.1			
İ	700	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1		v3.2.1	v3.2.1	v3.2.1	v3.2.1			
l	500	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	-	1	-				
Bias	400	1	v3.1.1	v3.1.1	v3.1.1					v3.2.1	1					
Bi	300	v3.2.1	v3.1.1	v3.1.1	v3.1.1					v3.1.1	v3.1.1	v3.1.1	v3.1.1			
İ	200	v3.2.1	v3.2.1	v3.2.1	v3.2.1					v3.1.1	v3.1.1					
İ	150	v3.2.1	v3.2.1	v3.2.1	v3.2.1					-	v3.2.1	v3.2.1	v3.2.1			
乚	100	v3.2.1	v3.2.1	v3.2.1	v3.2.1						v3.2.1	v3.2.1	v3.2.1			

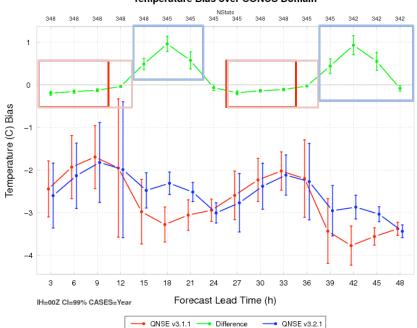
			Annual													
			Tempe	rature		Dew 1	Point T	emper	ature	Wind						
		f12	f24	f36	f48	f12	f12 f24 f36 f48				f24	f36	f48			
Г	850				v3.2.1						v3.2.1					
ı	700	-	v3.2.1													
L	500	-	v3.2.1	v3.2.1	v3.2.1	v3.2.1		-	v3.2.1			v3.2.1				
MS	400	-	v3.2.1	v3.2.1	v3.2.1						v3.2.1	v3.2.1				
BCRMSE	300	1	v3.1.1	v3.1.1	v3.1.1					v3.2.1	v3.2.1	v3.2.1	v3.2.1			
	200	v3.1.1	v3.1.1	v3.1.1	v3.1.1								v3.2.1			
ı	150	1	v3.1.1	v3.1.1	v3.1.1					v3.2.1						
L	100	-	v3.2.1	v3.1.1	v3.1.1					v3.2.1						
Г	850	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.1.1			v3.2.1				
İ	700	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.2.1							
ı	500	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.2.1						
Bias	400	v3.2.1	v3.2.1	v3.2.1	v3.2.1					v3.2.1	v3.2.1					
Bi	300	v3.2.1	v3.2.1	v3.2.1	v3.2.1					v3.1.1	v3.1.1	v3.1.1	v3.1.1			
İ	200	v3.2.1	v3.2.1	v3.2.1	v3.2.1					v3.1.1	v3.1.1	v3.1.1	v3.1.1			
ı	150	v3.2.1	v3.2.1	v3.2.1	v3.2.1						v3.2.1	v3.2.1	v3.2.1			
\perp	100	v3.2.1									v3.2.1	v3.2.1	v3.2.1			

AFWA: 2-m Temperature

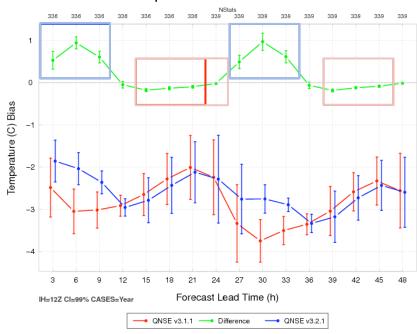

Summer Season

Temperature Bias over CONUS Domain

Winter Season


Temperature Bias over CONUS Domain

QNSE: 2-m Temperature


00 UTC initialization

Temperature Bias over CONUS Domain

12 UTC initialization

Temperature Bias over CONUS Domain

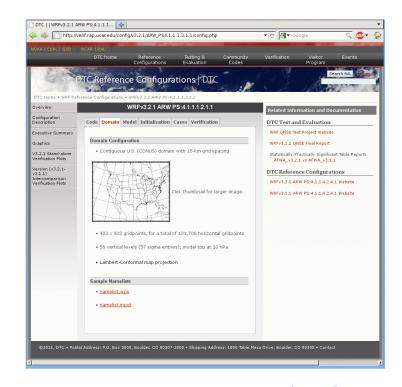
2-m Temperature SS/PS Tables

SS (light shading) and PS (dark shading) differences for BCRMSE and bias by init time, lead time, and season

AFWA: v3.2.1 - v3.1.1

			f03	f06	f09	f12	f15	f18	f21	f24	F27	f30	f33	f36	f39	f42	f45	f48
	l	Annual	v3.1.1	v3.1.1	v3.1.1		v3.1.1			v3.1.1	v3.1.1	v3.1.1	v3.1.1					v3.1.1
ı	ي jons	Summer	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1			v3.2.1	
1	00 UTC alization	Fall	v3.1.1		v3.2.1					v3.1.1	v3.1.1							v3.1.1
ı	00 UTC Initializations	Winter	v3.1.1			v3.2.1				v3.1.1	v3.1.1					v3.1.1	v3.1.1	v3.1.1
BCRMSE		Spring	v3.1.1	v3.1.1	v3.1.1		v3.1.1			v3.1.1	v3.1.1	v3.1.1			v3.1.1			v3.1.1
18		Annual				v3.1.1	v3.1.1	v3.1.1						v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
	ois successions	Summer					v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1
ı	12 UTC ializatio	Fall				v3.1.1	v3.1.1					v3.1.1		v3.1.1	v3.1.1			
ı	12 UTC Initializations	Winter				v3.1.1	v3.1.1						v3.1.1	v3.1.1	v3.1.1			
L		Spring				v3.1.1	v3.1.1	v3.1.1							v3.1.1	v3.1.1	v3.1.1	v3.1.1
Г	ī	Annual	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
1	ည ရှိ	Summer	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	
İ	00 UTC Initializations	Fall	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
ı	ľ	Winter	v3.1.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
Bias		Spring	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
iii		Annual	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
- 1	<u>اي ق</u>	Summer	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1
İ	12 UTC ializatio	Fall	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
ĺ	12 UTC Initializations	Winter	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1
L		Spring	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
				_				_				_			_		_	

QNSE: v3.2.1 - v3.1.1


L	_ =	Spring	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
				f06	f09	f12	f15	f18	f21	f24	F27	f30	f33	f36	f39	f42	f45	f48
Г		Annual	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1		v3.1.1
ı	ق بي	Summer	v3.1.1	v3.1.1	v3.1.1		v3.2.1			v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1			v3.1.1
ı	00 UTC ializatio	Fall	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1		v3.1.1
- 1	 	Winter	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.1.1	v3.1.1
Į Š		Spring	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1				v3.1.1
BCRMSE		Annual		v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
- 1	ions	Summer	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
ı	UTC	Fall		v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
ı	12 UTC Initializations	Winter	v3.1.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1			v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
L		Spring		v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1			v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
Г	T	Annual	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1
1	00 UTC Initializations	Summer	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.2.1	v3.2.1
ı	00 UTC alization	Fall	v3.1.1	v3.1.1	v3.1.1	-	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.2.1	v3.1.1
ı	lgi e	Winter	v3.1.1	v3.1.1	v3.1.1		v3.2.1	v3.2.1	v3.2.1	v3.1.1			v3.1.1		v3.2.1	v3.2.1	v3.2.1	v3.1.1
Bias		Spring	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1	
=		Annual	v3.2.1	v3.2.1	v3.2.1		v3.1.1			v3.1.1	v3.2.1	v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	
1	12 UTC Initializations	Summer	v3.2.1	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1								v3.1.1	v3.2.1
- [12 UTC ializatic	Fall	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1			v3.2.1						
-1	ligi 1	Winter	v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1			v3.2.1	v3.2.1	v3.2.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.1.1
L		Spring	v3.2.1	v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1	v3.2.1	v3.2.1	v3.2.1		v3.1.1	v3.1.1	v3.1.1	v3.1.1

Developmental Testbed Center-

Summary

- Results from the two RCs vary based on forecast variable, initialization, temporal/spatial aggregations, etc.
- Configuration descriptions, executive summaries, graphics, documentation, and a full suite of verification results are found at:

AFWA: http://verif.rap.ucar.edu/config/v3.2.1/ARW_PS4.1.1.4.2.4.1/index.php
http://verif.rap.ucar.edu/config/v3.2.1/ARW_PS4.1.1.1.2.1.1/index.php

Current/Future Activities

- Reference Configuration efforts with WRF v3.3
 - Retest AFWA and QNSE RCs
 - Assess performance of each configuration individually
 - Comparison of each configuration for v3.2.1 versus v3.3
 - Test new RCs
 - Hurricane WRF (HWRF) 2011 Operational Baseline
 - North American Mesoscale (NAM) model physics suite
 - WRF Rapid Refresh (RR) physics suite
- Solicit WRF community for additional RCs and CCRCs
- For more information: http://www.dtcenter.org/config/

Acknowledgements: The DTC is funded by the National Oceanic and Atmospheric Administration, the Air Force Weather Agency, and the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation.