Task 3.3: Code Management, testing and support for the data assimilation system

3.3.1: GSI code management and community

3.3.2: Annual baseline experiments

FY2011 leftover: DART EnKF tests (completed and reported in mid-term)

Hui Shao, Kathryn Newman, Ming Hu*, Don Stark*, Chunhua Zhou, and Hans Huang

*Shared costs with other partners

GSI Code Management

- Continue to maintain the DTC community repository
- Chair the GSI Review Committee and facilitate GRC activities:
 - GRC development coordination meeting: All committee members are required to present their ongoing effort and future plans:
 - April 16, 2012, telecon (3hr event)
 - August 28, 2012, on-site (1-day event)
 - January 15, 2013, telecon (3hr event)
 - Maintain GRC wiki at

https://wiki.ucar.edu/display/dtcgsi/GSI+Review+Committee

- Review code changes
 - Test code changes on multiple platforms
 - Conduct DTC regression tests
- Assist developers to transition their code changes to the GSI trunk
- Organize small group discussion, e.g., aerosol working group, for work coordination
- DTC staff (Ming Hu, Chunhua Zhou)visited the EMC GSI group, College Park, MD

GSI Community Support

- Annual code release:
 - The code review procedure reduces the pre-release testing period to less than one month for the beta release and less than two months for the official release
 - Beta release: June, 2012
 - Formal release: July 2012
- GSI Users' Guide v3.1: available at http://www.dtcenter.org/com-GSI/users/
 - Updated contents
 - New materials on satellite radiance data assimilation, modification of the GSI build environment, GSI hybrid capability and bias correction for satellite radiance observation
- GSI helpdesk:
 - 686 users registered through the DTC GSI webpage: 58% from universities, 24% from government users, 7% from private companies, and 12% from non-profit companies.

Annual Community GSI Tutorial

- August 21-23, 2012, NCAR Foothills Lab, Boulder CO:
 - 44 participants
 - First time to provide remote access
 - 13 Lectures (speakers from NCEP, NASA, NCAR, ESRL and DTC)
 - ~5hr basic practice session
 - half-day optional advanced practice session
- Lectures include
 - GSI fundamentals
 - Advanced talks
 - ✓ First time lectures:
 - GSI Hybrid Data Assimilation
 - Cloudy Radiance Data Assimilation

Participants' rating on overall tutorial expectations

Exceeded expectations

GSI Baseline Tests for AFWA

Motivation: Assist AFWA with determining appropriate initial configuration of GSI for operational implementation (proper set-up and definition of background error covariance.

Mechanism for AFWA-DTC Communications AFWF real-time operational WRFDA runs. AFWF real-time parallel GSI runs: Benchmark • DA system \$ • Oper config switch Updates/changes are periodically brought into 0 Oper config 5 parallel runs. Focus on evaluating the overall (updated) performance of GSI. 0 DTC real-time & retrospective GSI runs using g • Benchmark functionally-similar operational environment: • Parallel run • Benchmark config • Archived Focus on testing incremental changes. t h • Developmental Real-time: "sync" testbed, uncover the issues config a data / (suggested from the DTC) 2 Short-term retrospective: test individual ۲ background changes, tackle the issues for retro runs •

• Extensive retrospective: impact study w/ SS, test research/developmental components

Functionally Similarity Check

Only differences are input fields (background and observations) and individual changes to be tested.

Experiments and Results

- Real-time system test
- BE retrospective test
 - Operational BE
 - Domain-specific BE
- Data impact test
 - GPSRO
 - Channel selection
- Regional BE generation methods
 - NMC method
 - Ensemble perturbation method

AFWA Northern Hemisphere (T51) Domain

- 20km horizontal resolution
- 57 vertical levels
- 10hPa model top

Real-Time Runs

where S_w is the sum of the skill scores, weighted by lead time, for wind speed, dew point temperature, temperature, height at various levels and surface, and mean sea level pressure.

Retrospective Runs: What caused the drop?

- ✓ NAM BE: Northern Hemisphere BE computed based on NAM forecasts.
- ✓ GFS BE: Global BE computed based on GFS forecasts.
- ✓ RAP BE: Global BE tuned for the RAP.
 combination of global/regional (balance = GFS, Lengthscales/variance = NAM)

Domain-Specific BE

- GEN_BE-GSI code developed by Rizvi Syed (NCAR) based on the NCEP BE code.
- NMC method: 3month period of ARW forecasts: Oct-Dec, 2012
- ✓ Horizontal length scales of T51 ARW BE are significantly smaller that those of the NAM BE.

12

Domain-Specific BE: Impacts

Three additional retrospective experiments:

✓ T51 ARW BE: Northern Hemisphere BE computed based on ARW forecasts.

✓ Tune A: Tuned T51 ARW BE (*balance*=T51 ARW, *Lengthscales/variance* = *NAM*)

✓ Tune B: NAM BE interpolated onto the T51 grid

NMC Method Versus "Ensemble Perturbation" Method

- ✓ Perturbations used for the static BE generation can come from:
 - Forecast differences, e.g., 48hr forecasts-24hr forecasts -> "NMC" method
 - Ensemble perturbations -> "Ensemble Perturbation" method
- Experiments:
 - AFWA Caribbean domain (T8)
 - Ensembles generated using the NCAR DART system (FY2011 leftover task)
 - Model configuration: 36-km horizontal resolution, 45 vertical levels, and a 20 hPa model top.
 - Testing period:
 2008081100-2008091312

NMC Method Versus "Ensemble Perturbation" Method: BE factors

Summary and Conclusions

- DTC built and configured a functionally similar testing environment.
- For Northern Hemisphere, the NAM BE or tuned global BE w/ regional scaling is recommended at current stage. For Southern Hemisphere, BE should be examined separately since the model errors are expected to be larger than those in Northern Hemisphere.
- Domain specific BE still needs further tuning and investigation.
- The BE statistics computed using the ensemble perturbations resulted in much larger increments in wind fields compared with the NMC ones.
- Impacts of GPSRO data assimilation and alternative channel selection are neutral.

Data Assimilation AOP 2013 Activities

ID	Activity Description
DA1	GSI code management & repository maintenance, public release & user support*
DA2	GSI Tutorial*, Aug 6-8, 2013, College Park, MD
DA3	GSI Workshop*, Aug 9, 2013, College Park, MD
DA5	GSI baseline for AFWA
DA7	Community-base GSI observations pre-processing capability (currently beyond DTC 100% senario)

