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1. Introduction 

In 2016, the Developmental Testbed Center (DTC) built a High Resolution Rapid Refresh 
version 2 (HRRRv2) functionally similar testing system on NCAR’s supercomputer 
Yellowstone to provide the support for the research community to test and evaluate the 
possible contribution to operational storm-scale data assimilation and modeling. As part of 
contribution from DTC and initial application of such HRRRv2 operational functionally similar 
system, DTC Data Assimilation (DA) team conducted several experiments using this system 
on study to impacts of different Gridpoint Statistical Interpolation (GSI) hybrid Ensemble 
Variational (EnVar) options in HRRRv2. The 3-Dimensional and 4-Dimensional hybrid EnVar 
analysis with both hourly and sub-hourly cycling configuration were tested and results were 
reported in AOP 2016 T&E report.  

In AOP 2017 T&E task for data assimilation, the HRRR version 3 (HRRRv3) operation system 
was proposed as the target of operational functional similar testing system and testing and 
evaluating radar radial wind analysis in HRRRv3 was proposed as community contributions 
from DTC DA team to the operational convective system. HRRRv3 is using radar radial 
velocity following the similar configuration used by Rapid Refresh (RAP) and DTC will 
investigate and tune the radial velocity analysis based on operational GSI configuration to 
help HRRR development team better understand and even configure the radial velocity data 
analysis in HRRR. 

Section 2 of this report will describe the building of a HRRRv3 functionally similar testing 
system on NCAR Cheyenne for community users, including the system features and the 
verification of its functionally similar ability. The first step of data impact experiments is to 
understand the data and the operator of the data in the analysis. Section 3 explains several 
tools developed by DTC to check the radial velocity observations used in the HRRR and their 
superobed results. Also, in Section 3, we conducted a series of single case study to find the 
possible parameters for improving the GSI radial velocity analysis data. Section 4 introduces 
the experiments of testing and evaluating the impact of radial velocity on the HRRRv3 and 
section 5 describes the efforts to use MET as verification tool for the HRRRv3 Cheyenne 
system.  

 

2. Building HRRRv3 functionally similar Testing System 

 
2.1 HRRRv3  

The  NOAA operational HRRRv3 was developed by the NOAA Global Systems Division (GSD) 
on the NOAA development supercomputer platforms and is running in NOAA operational 
supercomputer in NCEP for operational testing and application. HRRRv3 will replace HRRRv2 
to be US operational convective allowing modeling in middle July, 2018. HRRRv3 is an hourly 
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updated, cloud-resolving, convection-allowing atmospheric model running on 3-km grid 
covering US COUNS domain. The HRRRv3 uses the same code as the NOAA’s Rapid Refresh 
system version 4 (RAPv4), including the Weather Research and Forecasting (WRF) Model 
version 3.8 with the hybrid vertical coordinates, WPS (WRF Preprocessing System) version 
3.9 with some updates/modifications from GSD, and the GSD-modified version of the GSI 
(Gridpoint Statistical Interpolation) data assimilation and UPP (Unified Post Processing) 
systems.  

 
2.2 Building HRRRv3 functionally similar system on Cheyenne 

To access by the general research community, HRRRv3 needs to be runs and evaluated on 
the NCAR supercomputer Cheyenne, which was implemented in 2017 to replace the 
previous super computer Yellowstone. Cheyenne uses different compiling modules and 
environments from its predecessor Yellowstone and NOAA supercomputers, therefore a lot 
of efforts have been made to port the HRRRv3 system, including compiling the code with 
GSD options, debugging and fixing the WRF and GSI code in order for them to run 
successfully on Cheyenne.  

In order for the experiments to be consistent with the runs conducted by NOAA colleagues 
on NOAA supercomputers, all the initial and boundary conditions (downscaled from the 
retrospective 13-km Rapid Refresh runs), and observations have been prepared by 
colleagues at NOAA/GSD and then transferred to Cheyenne. The run scripts and workflow 
were also changed for easily use by the research community. The details of preparing the 
HRRRv3 on NOAA machine for period from September 3th, 2016 to September 10th, 2016 is 
explained below:  

 
Prepare observation data for experiments.  

 
The RAPv4/HRRRv3 system will need the following observation files: 
 

 NCEP PrepBUFR files, satellite radiance files, satellite derived wind files, satellite 
clouds, snow observation files, national MRMS reflectivity mosaic files, NEXRAD level-
2 radial wind files, GLD360 lightning files, aircraft observation files and Green 
Vegetable Fractions files.  
 

It will also need corresponding GFS forecasts and GDAS Ensembles. All these observation 
files, forecasts and ensembles for the experiment period were downloaded from different 
directories at the NOAA HPSS archive system.  

 
Fill up missing radar data from the NCEP archive 

 
It was found that quite a few MRMS reflectivity data (see below) were missing in the RAP 
archive at Theia HPSS. Since we will run HRRR retrospective experiments and reflectivity-
based temperature tendency nudging is an important part of HRRR, considerable efforts were 
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made to fill up these missing radar reflectivity data from the NCEP operational data archive at 
Theia HPSS. 

 
  2016090318_30    2016090405_30    2016090414_45 
2016090506_15    2016090505_30    2016090505_45    2016090505_60 
2016090617_15    2016090618_15    2016090617_30 
2016090618_30    2016090617_45    2016090618_45    2016090617_60 
2016090618_60    2016090619_15    2016090705_30    2016090705_45 

  2016090705_60    2016090717_30    2016090717_45    2016090717_60 
2016090706_15    2016090706_30    2016090706_45    2016090718_15 
2016090718_30    2016090805_30    20160909_1715    20160909_1730 

  20160909_1745    20160909_1760    20160909_1815    20160909_1830 
  20160910_0415 ~2315      20160910_0430 ~2330     
  20160910_0445 ~2345  20160910_0460 ~2360 

 
 

Run RAP to get ICs and BCs for HRRR experiments 
 

Before running the HRRR retrospective experiments, we need to set up and run the RAPv4 
system first to provide boundary conditions and initial conditions for HRRR runs. A full RAP 
domain retrospective experiment was conducted using the same parameter configuration as 
operational RAPv4 for the period. When the RAP retro was completed, the results were 
verified against radiosonde and METAR observations using the verification package 
developed by the ESRL/GSD verification group (MATS). The verification statistics were 
compared with GSD real-time RAPv4 runs to make sure the RAPv4 system was correctly 
installed and configured. The statistics can be examined by visiting MATS system at: 

 https://www.esrl.noaa.gov/gsd/mats/.  
It was shown that the RAP retro was not significant different from the semi-operational 
RAPv4 running at the Global System Division. As an example, Fig. 2.1 show the 
temperature RMS profiles for the GSD real-time RAPv4 (blue) and our RAP retro (red) 

 

 
Figure 2.1, The temperature RMS profile for 0-h forecast of real-time RAPv4 (blue)  and our 

RAP retro experiment (red) 
 

Modify rocoto xml to best suit research uses 
 

The RAP/HRRR system uses the ROCOTO software to control its workflow. ROCOTO 
utilize an XML file to define all running tasks and task dependencies. RAP/HRRR contains 
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hundreds of tasks and the semi-operational run at GSD wraps all tasks in one big XML file 
usually called RAP_primary.xml or HRRR_primary.xml. This is good for real-time running but 
not convenient for retrospective experiments in research. Retrospective experiments are 
characterized by more frequent changes to the XML files in order to test some specific tasks 
such as filling missing observations shown in the above, running a series of experiments with 
different data assimilation settings but with the same set of observational data. In this regard, 
we modified the all-in-one big XML file to a more structured format. Every task/meta-task in 
the RAP/HRRR workflow is described in an independent task file under the directory tasks/. 
Taking HRRR as an example, Fig. 2.2 shows the list of tasks in the HRRR workflow. This 
structured xml files make changing and checking given tasks much easier. 

 

 
Figure 2.2.  List of tasks in the HRRR workflow for community HRRRv3 system 
 

With the above change, the main XML file becomes more readable. At the same time, 
we separate the HRRR retro workflow into two parts. The first part is named as “prep.xml” and 
included observation, initial conditions and boundary conditions processing tasks. It can be 
seen from Fig. 2.3 that it is very easy to add or remove specific tasks from the workflow. The 
second part is named as “prod.xml” and run data assimilation, WRF forecasts, post-
processing and figure plotting tasks. For different retrospective experiments, we only need to 
run the second part of HRRR workflow, i.e. “prod.xml”. All workflow related environmental 
variables are set in a file called “env.ent”. 
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Fig. 2.3 An example of the HRRR workflow “prep.xml” file 
 

 
Fig. 2.4 An example of the HRRR workflow “prod.xml” file 

 
 

The control and sanity check experiment 
 
After prepared all the data and system for RAPv4/HRRRv3, ran two experiments to make sure 
the HRRRv3 functionally similar system can produce testing results that can be directly used 
to evaluate for operational implementations  

The HRRRv3 functional similar system following the default configuration of the operational 
HRRRv3.  Radar reflectivity data is assimilated every 15 minutes over a 1-hour pre-forecast 
period to generate background file that included with initialize storms. This updated field is 
then used for the GSI 3D EnVar analysis at 12-km grid and GSD cloud analysis at 3-km grid 
thereafter. The radar radial velocity data are assimilated at the 12-km grid, using the default 
superob parameters as listed in table 2.1, with the azimuth being 5 degrees and superob 
range being 5km (max range 100km), time window being +/-0.5 hour and minimum number 
of observations in the box being 50.  

Table 2.1 Default superob parameters for the HRRR control run 
Del_azimuth Del_range Range_max Del_time minnum Del_elev 
5 degrees 5km 100km 0.5 50 0.25 

 
 

a. HRRR domain vs experiment domain 
 
The full HRRR domain covers the full CONUS area and contains 1800x1100 horizontal grid 
points which is very computational expensive. In order to run experiments faster, we reduce 
the model domain to cover most interested part - the middle part of CONUS centered at great 
plain where spawns most convective storms in the experiment period. It contains 650x550 
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horizontal grid points (see Fig. 2.5). It is about 6 times smaller than the full HRRR domain and 
makes HRRR experiments run much faster.  

 

 
Figure. 2.5 The reduced HRRRv3 domain for experiments 

 
 
To make sure the full domain HRRRv3 and reduced domain HRRRv3 are producing similar 
results, we ran a reduced domain HRRRv3 experiment for one day, generated verification 
statistics and compared them with real-time full domain HRRRv3 at GSD. Results show these 
are no significant differences between the two runs. This confirmed that the reduced domain 
HRRRv3 was successfully set up on Theia and can be used to replace full HRRR domain runs 
to save computation time. 
 
b. Building HRRRv3 on Cheyenne (NCAR) and sanity check 

 
After RAPv4/HRRRv3 was successfully setup at the NOAA supercomputer Theia and all 
observations processing, initial and boundary conditions were completed, the system were 
ported to the UCAR supercomputer Cheyenne. This makes HRRRv3 available for community 
users.  
 
NCAR colleagues repeat the HRRRv3 control experiment, which is a one-week long HRRRv3 
runs for September 3-10 2016 on Thiea, on the UCAR supercomputer Cheyenne. The post-
processed model outputs were then transferred to the NOAA supercomputer Theia where the 
data can be loaded to the NOAA’s verification system – MATS (Model Analysis Tool Suite) 
and then compared to the same control run conducted on Theia. This comparison is to ensure 
the functional similarity between the two computers and minimal divergence between the two 
control runs. Fig. 2.6 shows the comparison of the two control runs, in terms of the vertical 
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profile of the temperature root mean squared errors (RMS), for forecast hours 0, 1, 3, 6, 9 and 
12. As can be seen from the almost overlapping curves and error bars (95% confidence), the 
two control runs perform very similar despite the differences from the computer platforms and 
compiling environment and etc. Same features can be observed in the vertical profiles of 
temperature bias (model minus observation), as in Fig. 2.7. This functional similarity of HRRR 
performance between the two platforms is observed across the variables, as shown in Fig. 2.8 
for the vertical profiles of the wind RMS, Fig. 2.9 for the wind bias, Fig. 2.10 for the RMS of 
relative humidity (RH), and Fig. 2.11 for the bias of the relative humidity. Fig. 2.12 and 2.13 
show the time series of the surface dewpoint RMS and bias respectively. It confirms the 
findings from the vertical profiles that the two control runs perform very similarly, in terms of 
both vertical profiles and surface time series. Therefore, it can be concluded that porting the 
HRRR system from Theia to Cheyenne doesn’t cause the system to behave differently and it 
is ready for further experiments.  

 

Figure 2.6 Vertical profiles of temperature root mean squared errors (RMS) from the control 
runs on Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 
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Figure 2.7 Vertical profiles of temperature bias (Model-Observation) from the control runs 
on Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 

 

  

Figure 2.8 Vertical profiles of wind root mean squared errors (RMS) from the control runs on 
Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 
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Figure 2.9 Vertical profiles of wind bias (Model-Observation) from the control runs on 
Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 

 Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12.

 

Figure 2.10 Vertical profiles of RH root mean squared errors (RMS) from the control runs on 
Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 



 12 

 

 

Figure 2.11 Vertical profiles of RH bias (Model-Observation) from the control runs on 
Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 

 

Figure 2.12 Time series of surface dewpoint root mean squared errors (RMS) from the 
control runs on Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 
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Figure 2.13 Time series of surface dewpoint bias (Model-Observation) from the control runs 
on Cheyenne (red) and Theia (blue) for forecast hours 0, 1, 3, 6, 9 and 12. 

 

 

 
3. Radar Radial Velocity Data Check 
 
The impact of radial velocity on HRRR forecast is the focus of AOP 2017 T&E tasks. Before 
doing data assimilation and forecast experiments, it is very helpful to take a close look at the 
raw radial velocity data use in the GSI analysis and understand the data coverage and 
quality.  

 
3.1 Check NCEP level II radial velocity BUFR data examination 
 
The radial velocity data used in the RAP/HRRR are provided hourly in BUFR format by NCEP. 
Each BUFR file contains radial velocity observation from all CONUS NEXRAD sites available 
in NCEP data tank within a time window [-30 minutes, 30 minutes] centered at the hour. A 
utility was developed to decode the BUFR file and write out radial velocity data in the gate, 
azimuth, elevation order to a text file for further examination. NCL scripts were also developed 
to plot BUFR radial velocity data in polar coordinates for visual checking. The corresponding 
raw NEXRAD Level II data was obtained from Amazon radar archive and plotted using the 
IDV software from Unidata.  
 
The figures plotted from RAW files and NCEP BUFR files are compared against each other. 
It was found that the NCEP BUFR files missed a lot of radial wind data in some cases as 
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compared to the raw data files during the experiment period. Fig. 3.1 showed the radial winds 
at the 3.1˚ elevation angle for KVNX at 20160910 0000 UTC. The left panel is from the raw 
data file, the right panel is from the NCEP BUFR file. It is very clear that lots of radial velocity 
data were missed in the NCEP BUFR file. Fig. 3.2 showed the radial winds at the 0.5˚ elevation 
angle for KICT at 20160910 0021 UTC. Similar data missing issue showed for this case. We 
also checked many other cases and found the NCEP BUFR file does have a large portion of 
radial velocity data  in some case, such as one showing in Fig. 3.3 (1.3˚ elevation angle for 
KICT at 20160910 0021 UTC). 
 

 
  
 
Figure 3.1  The radial winds at the 3.1° elevation angle for KVNX at 0000UTC 20160910. Left 

panel from raw data file and right panel from NCEP BUFR file. 
 

Figure 3.2 The radial winds at the 0.5° elevation angle for KICT at 0021 UTC, 20160910. Left panel 
from raw data file and right panel from NCEP BUFR file. 
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Figure 3.3 The radial winds at the 1.3° elevation angle for KICT at 0021 UTC, 20160910. Left panel from raw 
data file and right panel from NCEP BUFR file. 

 
 
Because the cases we prepared for experiments were in September, 2016, we further 
examined recent NCEP radial velocity BUFR files in 2018 to check whether this data missing 
issue still exists. It was found the problem remains in many 2018 cases. Fig. 3.4 showed that 
at 20180228_1904 UTC, the NCEP BUFR radial velocity file missed a lot of observations as 
compared to raw format files. We discussed these results with NCEP EMC colleagues. They 
acknowledged that there were missing radial velocity observations especially in low elevation 
angles due to strict quality control procedures for operational applications.  
 

 
 
 

Figure 3.4 The radial winds at the 0.5° elevation angle for KFWS at 1904 UTC, 20180228. Left panel from 
raw data file and right panel from NCEP BUFR file. 

 
Because the data availability is fundamental issue in operational data assimilation system, 
other  comparison between raw radial velocity observations and the NCEP radial velocity 
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BUFR files with different display utilities were conducted. The new case checked is 
September 10, 2016, when there is strong convection along the front, crossing Kansas into 
northwestern Texas (as shown in Fig. 3.5, Satellite surface composite for 00:30Z of 
September 10, 2016).  

 

Figure 3.5  Satellite surface composite for 00:30Z of September 10, 2016 (downloaded from the NCAR/MMM 
image archives at http://www2.mmm.ucar.edu/imagearchive/). 

Fig. 3.6 shows the radial wind data coverage within different layers, derived from the GSI 
diagnostic files at 00Z of September 10, 2016. The radial wind data seems to have a good 
coverage over the model domain, with most data between the pressure levels of 900hPa 
and 750hPa. The radial wind shows a northerly wind behind the front and southerly wind 
ahead of the front, and there are radar data observed near the convective system. 
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Figure 3.6 Radial wind data coverage within different layers, derived from the diagnostics of the GSI run at 00Z 
of September 10, 2016. 

Fig. 3.7 shows the NEXRAD coverage map, focusing on the stations near the convective 
system as in Fig. 10. In the following section two stations in Kansas, KICT (Wichita) and 
KTWX (Topeka) were chosen to do more exam on the radar data quality and distribution.   
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Figure 3.7. NEXRAD coverage map (from https://www.roc.noaa.gov/WSR88D/Maps.aspx) 

Fig. 3.8 shows the raw data from NEXRAD Level II for the station KICT at around 00Z of 
September 10, 2016 for radial wind (upper panels) and reflectivity (bottom panels), for two 
elevation angles, 0.48 (left panels) and 1.32 (right panels), respectively. The northeast-
southwest tilted convective system can be clearly seen from the KICT radar data, with a very 
good coverage in both radial wind and reflectivity. 

 

Figure 3.8, NEXRAD Level II raw data for the station KICT at around 00Z of September 10, 2016 for radial wind 
(upper panels) and reflectivity (bottom panels), for two elevation angles, 0.48 (left panels) and 1.32 (right 

panels), respectively. 

 

Fig. 3.9 lists the data from RAP radar bufr file for KICT at 00Z of September 10, 2016, in 
which the 2nd column gives the time of scan in the format of DDHHMM (for example, 
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100004 mean September 10 00:04Z), the 3rd, 4th and 5th column gives the scan id, number of 
rays within the scan and elevation angle respectively. From the list, 4 scans are picked to 
show the radial wind distribution, as denoted in the red boxes in Fig. 3.9, with an intention 
to match the time and elevation angles in Fig. 3.8 and also maximize the data coverage by 
choosing the relatively large number of rays. Fig. 3.10 shows the radial wind plots of the 
above selected 4 scans (denoted in the red boxes). Comparing Fig. 3.8  and 3.10, it can be 
seen that quite some radial wind data have been missed from the raw observations during 
the NCEP processing, partly might be due to the cross check between the radial wind and 
reflectivity. Overall the NCEP BUFR data contains significantly less radial wind data 
compared to the raw observations and this limited data volume might limit the performance 
of the radar data assimilation.  

 

 

Fig. 3.9 Lists of the data from RAP radar bufr file for KICT at 00Z of September 10, 2016, in which the 2nd, 3rd, 
4th and 5th column gives the time of scan in the format of DDHHMM, scan id, number of rays within the scan 

and elevation angle respectively. 
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Figure 3.10 KICT radial wind plots of the above selected 4 scans (denoted in the red boxes) from the RAP radar 
bufr data at 00Z September 10, 2016. 

We also take a look at another station, KTWX, which is also within the convective system. 
Fig. 3.11 is similar to Fig. 3.8 but showing the raw data from NEXRAD for elevation angle 
0.48 only. It can be seen the radial wind covers the whole area around the station, 
suggesting a north-westerly wind at low level, while the strongest reflectivity shows the 
tilted convective system.  

 

Figure 3.11 NEXRAD Level II raw data for the station KTWX at around 00Z of September 10, 2016 for radial 
wind (left panel) and reflectivity (right panel), for elevation angle 0.48. 
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Fig. 3.12 shows the RAP bufr data for KTWX at the same elevation angle (0.48). Surprisingly 
the data volume in the RAP bufr data is very different from the raw data. Compared to the 
full coverage in the raw radial wind data, the RAP bufr data only shows very sparse coverage 
and is even a huge reduction from the strongest reflectivity coverage. The bufr data is so 
sparse, making it almost useless in the data assimilation. It raises concerns about the 
procedure behind the NCEP radar data processing and what caused the large amount of 
data being removed, which otherwise might be useful. 

 

Figure 3.12  NCEP BUFR file for KTWX at 00:04Z (left), 00:09Z (middle) and 00:14Z (right) of September 10, 
2016, for elevation angle 0.48. 

 
This data missing issue indicates that we may need to revisit the radial velocity quality control 
procedures for storm scale implementations. However, this goes beyond the scope of AOP 
2017 T&E tasks. On the other hand, although there are a lot of data missing, we still have 
enough radial velocity observations in a one hour or 30-minute time window to generate 
representative super-obbed radial velocity observations for meaningful data assimilation 
experiments. 
 
 
3.2 Radar superob setting examination 
 
GSI assimilates radar radial velocity in a superob fashion. It averages radial velocity 
observations in a three-dimensional cell, called the superob cell. The size of the superob cell 
is defined by range, azimuth, elevation and time intervals. In GSI, the superob setting is 
controlled by the “superob_radar” namelist section as shown below: 
 

& superob_radar 
del_azimuth=5., 
del_elev=.25, 
del_range=5000., 
del_time=.5, 
elev_angle_max=5., 
minnum=50, 
range_max=100000.,  
/ 

Where “del_azimuth” defines the azimuth interval, the default value is 5 degree; “del_elev” 
defines the elevation interval, the default value is 0.25 degree; “del_range” defines the range 
interval, the default value is 5 km; “del_time” defines the time interval, the default value is 
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0.5 hours, i.e. 30 minutes;  “minmum” defines the minimum required number of observation 
points to generate a valid superob; “elev_angle_max” defines the maximum elevation angle, 
the default value is 5 degree; “range_max” defines the maximum range in the superob 
process, the default value is 100 km.  The latitude and longitude of a superob are also 
computed as averages of available observation latitude and longitude in a superob cell. The 
observation error for a superob is the stand deviation of radial velocities in a superob cell. 
 
To check how superobbed radial velocity looks like and how the GSI superob part works, we 
used tools developed in previous section to write out only one radar sweep from one radar 
into a small BUFR file and made superob’s from this small BUFR file. The following discussions 
are based the 1.3° sweep from KINX radar at 20180227 2102z. Fig. 3.13 showed the 
comparison of original radial velocity observations in the NCEP BUFR file and the super-obbed 
radial velocity data using the default superob setting as in RAPv4/HRRRv3. It can be seen that 
superob process reduced data amount and kept important convective details. Fig. 3.14  
showed the standard deviations associated with superob’s in Fig. 3.13. Most standard 
deviations are smaller than 2 ms-1, while a few cells with standard deviation of 3 ms-1. All 
these indicate that the GSI superob process works well.  Fig. 3.15  showed the superob results 
using smaller superob cells with the setting “del_azimuth=3, del_range=3, del_time=0.25, 
minmum=25”. It can be seen that more observation details are kept when using smaller 
superob cells. 
 

 
Figure 3.13. Original radial velocity data and super-obbed radial velocity data 
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Fig. 3.14.  Standard deviation of superob’s in Fig. 3.13 

 
Fig. 3.15 . Original radial velocity data and super-obbed radial velocity 

 
3.3 VAD checking 
 
Besides the radial wind data being assimilated in the GSI, the VAD (Velocity Azimuth Display) 
wind profiles embedded in the NCEP PrepBUFR data is also being assimilated in the HRRR 
system. The VAD, a derived product from radial wind observations, is a plot of horizontal 
winds, as a function of height above a Doppler Radar. It depicts the change in wind with 
time at various heights and is useful for observing local changes in vertical wind shear. 
According to verbal communications with NOAA colleagues, past RAP/HRRR experiments 
have found negative impact from assimilating VAD wind, which is supposed to provide 
useful information on the storm environment. In the experiments to be conducted, the VAD 
products are also evaluated. Therefore diagnostics of the VAD wind data is performed for 
the same date. Fig. 19 shows the locations of the VAD observations and the wind barbs for 
each station. Similar to the radial wind distribution in Fig. 11, northerly (southerly) winds are 
observed behind (ahead of) the front.  And there are some discrepancy between the radial 
wind and VAD stations. 



 24 

 

 
Figure 19 Locations of VAD wind data for 00Z September 10, 2016. 

 
4. Understand the GSI radar radial velocity analysis with single case study 

 
Before running one week long retrospective experiments, we conducted a series of single 
case studies to examine the impact of radial velocity assimilation on HRRR analysis and 
determined the optimal parameter settings for different experiments. Based on the SPC 
storm reports (Fig. 4.1), we selected 20160910 000UTC as the time to conduct our single case 
studies. At this time, a major square line moved across the Great Plain area (Fig. 4.2), yielded 
large hails, damage winds and a few tornadoes(Fig. 4.1).  
 

 
Figure 4.1  The SPC storm report around 20160910 0000 UTC 

(http://www.spc.noaa.gov/exper/archive/event.php?date=20160909) 
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Figure 4.2 The composite reflectivity at 20160910 000UTC 
 
The radar radial winds are in high spatial and temporal resolutions and contain convective-
scale information. The range resolution of radial velocity data in NCEP BUFR files is 250 m, 
which is much higher than HRRR model horizontal resolution of 3 km. In order to correctly 
assimilate this convective-scale information into the model, a few modifications to current 
HRRR configuration should be made. First, the decorrelation scale of the static BE 
(background error covariance) and the localization scale of the ensemble BE should be 
adjusted to match the high resolution of radial winds. Second, the default superob parameter 
setting is based on the NAM application which conducts data assimilation at 12 km, this 
setting may not be suitable for the 3 km data assimilation of this study.  
 
4.1 BE horizontal decorrelation Length scale tuning 
 
The static BE horizontal decorrelation scale is controlled by the parameter hzscl(3), which 
needs three values. For example, the default ones are “hzscl=0.373,0.746,1.5”. It needs three 
values because the fat-tailed power spectrum of horizontal impact is achieved by combining 
three recursive filters with different impact scales respectively (Fig. 4.3). The above three 
values are the scale factors of each recursive filter. This poses a problem: the actual BE 
horizontal impact scale is not known straightforward. We hence conducted single 
observations tests by putting an observation at the model center and 500hPa height and then 
plotting the cross section through the location of the single observation. This way, we can 
know the rough impact scale of the combination of recursive filters. Fig. 4.4 showed that the 
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default “hzscl” setting corresponds to an impact scale of about 300 km.  Through a few tries, 
we find a setting “hzscl= 0.02487, 0.04973, 0.1” which corresponds to an impact scale of 
about 20 km. This impact scale is considered to be more appropriate for 3 km convective scale 
radar data assimilation.  
 

 
 
Figure 4.3 Fat-tailed Power Spectrum for horizontal impact in GSI static BE part (Courtesy of Wan-Shu Wu) 
 

 
Figure 4.4. The horizontal impact of the GSI static BE part for two different set of hzscl parameters 
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The ensemble localization scale is controlled by the parameter s_ens_h and s_ens_v. Their 
settings are pretty straight-forward. The default values are 110 and 3, corresponds to 110 km 
in horizontal and 3 grid points in vertical respectively. To match the above static BE scale 
changes, we set the corresponding ensemble localization scale to 20 km in horizontal and 2 
grid points in vertical. 
 
4.2 Impact of super-ob tuning and length scale tuning on analysis 
 
Three single analysis experiments were conducted. All three experiments were done at 
20160910 00:00 UTC and they assimilated only radial wind observations in order to easily 
examine the impact of super-ob tuning and length scale tuning  on analysis.   
 
The first experiment is the control (CTRL) experiment, which assimilated radial winds at 12 
km. The second experiment assimilated radial winds at 3 km in a separate second pass with 
smaller horizontal and localization scales, i.e. those corresponds to 20 km horizontally 
discussed in previous section. This experiment will be referred as HEX1 (mnemonics of hybrid 
experiment 1). The third experiment is similar to HEX1 except that it uses a new set of superob 
parameters, the changed ones illustrated in Fig 3.15 in section 3.2, which uses smaller 
superob cells. This experiment will be referred as HEX2.  
 
Fig. 4.5 shows the analysis increments from the CTRL, HEX1 and HEX2 experiments. We can 
see that using default large impact scale, the analysis increments are very smooth in the CTRL 
experiment. When using smaller impact scale, the analysis increments become very local, 
showing more convective features in the HEX1 and HEX2 experiments. Fig. 4.6 showed the 
analysis increments by zooming into the Nebraska Area. It is very clear that using smaller 
impact scale yields evident convective-scale local analysis increments compared to smooth 
increments in the CTRL experiment.  Comparing HEX1 with HEX2, we can see there are evident 
differences in the incremental wind field in the middle bottom part of Nebraska area. This 
indicates that more convective information kept from using smaller superob cells and it does 
affect the wind analysis. Fig. 4.7 and Fig. 4.8 showed the increment fields for temperature 
and water vapor specific humidity. We can see that GSI is able to balance the wind innovations 
with the temperature and water vapor fields. When using smaller impact scale, the 
increments get smaller and more local, similar behavior as in the wind field. 
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Figure. 4.5 The wind increments of the CTRL, HEX1 and HEX2 experiments at 00:00 UTC, 20160910 

 
 

 
Figure 4.6. Similar as Fig. 4.5 but zoomed into the Nebraska area. 
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Figure 4.7 Temperature increments (K) of the CTRL, HEX1 and HEX2 experiments at 00:00 UTC, 20160910 
 

 
Figure 4.8  Specific Humidity increment (g/kg)  of the CTRL, HEX1 and HEX2 experiments at 00:00 UTC, 

20160910 

 

The same single case is also used to study the possible tuning of the superob parameters for 
improving storm environment by increasing the size of the superob cells. As listed below, 
besides the control (using the default configurations, except for a shortened time window to 
+/-0.2 hours), there are 3 other single case studies which increase the superob box to be 
nearly 2, 4 and 6 times of the default one.  

• Control: del_azimuth=5, del_range=5000 
• 12km grid: del_azimuth=13, del_range=12000 
• 24km grid: del_azimuth=27, del_range=24000 
• 36km grid: del_azimuth=42, del_range=36000 

Fig. 4.9  gives the wind increments (upper panels) and total wind fields (red: background; 
green: analysis) at model level 11, for the single case studies with superob range at 5km, 
12km, 24-km and 36-km, from left to right. As can be seen, the wind increments tend to be 
smoother with increased superob ranges. Overall, the wind increments from the radial wind 
assimilation are quite small and differences between different superob boxes are small too. 
Similar features are observed in the temperature and humidity increment fields, as seen in 
Fig. 4.10, and main increments are observed near the convective system. 
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Figure 4.9 Wind increments (upper panels) and total wind fields (red: background; green: analysis) at model 
level 11, for the single case studies with superob range at 5km, 12km, 24-km and 36-km, from left to right. 



 31 

 

Figure 4.10 Temperature (left panels) and mixing ratio (right panels) increments at model level 11, for the 
single case studies with superob range at 5km ( top row), 12km (2nd row), 24-km (3rd row) and 36-km (bottom 

row), from top to bottom. 

 

 
4.3 The impact of VAD wind in GSI analysis 

Besides the single case studies with tuned superob parameters shown above, another single 
case study is conducted for the same date, with only VAD wind assimilated. Fig. 4.11 shows 
the increments at model level 11 for temperature, humidity and wind fields. As can be seen 
the increments are quite different from the increments from assimilating radial wind only, in 
terms of both magnitude and distribution. And the increment plots are jagged at some 
areas, which remains of unknow causes yet. Fig. 4.12 shows the wind increment and total 
wind fields at model level 11 for the VAD only, showing very different response in the wind 
field compared to the runs with radial wind only. This is puzzling since the two are both 
radar data products and supposedly they should provide similar information. More 
diagnostics are needed.  
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Figure 4.11 Temperature (T, in K), humidity (q, in g/kg), U-wind (in m/s) and V-wind (in m/s) increments at 
model level 11 for the experiment with VAD only. 

 

 

Figure 4.12 Wind increments (left panel) and total wind fields (right panel, red: background; green: analysis) at 
model level 11, for the single case study with VAD only. 
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5. September 2016 HRRR Retrospective Test for Radial Wind Impact  
 
5.1 Experiment setups for high resolution analysis 
 
Table 5.1 lists all one-week long retrospective experiments conducted to study the use of 
radial winds (RW) in high resolution 3-km analysis grid and small super-obbing cells. All 
experiments followed similar workflow and configuration as the real-time RAPv4/HRRRv3 
system and assimilate all available conventional observations, radar reflectivity and lightning 
observations, NASA LaRC cloud products and aircraft observations. The JET was used for 
running the experiments and MATS was used for verification. 

 
The CTRL experiment assimilated radial wind observations at a 12 km analysis grid using the 
hybrid 3DEnVar method. The horizontal impact scale, the ensemble localization scale and the 
superob settings followed the values used in the RAPv4/HRRRv3 system. The NoRW 
experiment did not assimilate radial winds and was used to study how much benefits we can 
get from additional RW assimilation using default parameter settings in the CTRL experiment. 
The HEX1 experiment assimilates additional RW observations at 3 km analysis grid using the 
hybrid 3DEnVar method. It is different from the CTRL experiment in the horizontal impact 
scale and ensemble localization scale parameter settings. The CTRL experiment uses a large 
horizontal length scale of about 300 km and an ensemble localization scale of 110 km 
horizontally and 3 grid points vertically, while the HEX1 experiment uses a smaller horizontal 
length scale of about 20 km and an ensemble localization scale of 20 km horizontally and 2 
grid points vertically. HEX2 experiment is similar as HEX1 except that HEX2 uses a different 
superob setting which adopts smaller superob cells. NEX1 and NEX2 are similar to HEX1 and 
HEX2 respectively but NEX1 and NEX2 assimilate RW data using the pure 3DVar method. The 
purpose of NEX1 and NEX2 is to examine whether we can benefit from the hybrid 3DEnVar 
method for the assimilation of high resolution RW data by incorporating large scale GDAS 
ensemble covariance.  
 

Table 5.1 List of experiments and different parameter settings for the assimilation of RW 
Experiment Assimilation strategy for 

RW (radial winds) 
Horizontal scale for 
RW 

Localization 
scale for RW 

Superob setting 

CTRL Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 5deg, 5km, 60min, minimum 50 points 
NoRW n/a n/a n/a n/a 
HEX1 Hybrid 3DEnVar at 3 km 0.02487,0.04973,0.1 h=20, v=2 5deg, 5km, 60min, minimum 50 points 
HEX2 Hybrid 3DEnVar at 3 km 0.02487,0.04973,0.1 h=20, v=2 3deg, 3km, 15min, minimum 25 points 
NEX1 3DVar at 3km 0.02487,0.04973,0.1 n/a 5deg, 5km, 60min, minimum 50 points 
NEX2 3DVar at 3km 0.02487,0.04973,0.1 n/a 3deg, 3km, 15min, minimum 25 points 

 
 
Table 2 listed for each experiment the mnemonics and the associated verification names in 
the NOAA/GSD MATS system (https://www.esrl.noaa.gov/gsd/mats/).  
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Table 2 List of experiments and the associated mnemonics and verification names in the NOAA MATS system 
Experiment Mnemonics Verification Name in the NOAA/GSD MATS system 

CTRL Control HRRRret_ctrl_20160903_gge 
NoRW No Radial Winds HRRRret_gge_NoRW_Sep2016 
HEX1 Hybrid experiment 1 HRRRret_gge_HEX1_Sep2016 
HEX2 Hybrid experiment 2 HRRRret_gge_HEX2_Sep2016 
NEX1 Non-hybrid Exp. 1 HRRRret_gge_NEX1_Sep2016 
NEX2 Non-hybrid Exp. 2 HRRRret_gge_NEX2_Sep2016 

 
5.2 Results for high resolution analysis 
 
a. verifications against radiosonde and surface METAR observations 
 
We computed the RMS and bias against radiosonde and surface METAR observations to 
examine the impact of different data assimilation experiments on synoptic scale environment 
forecasts.  The statistical results are based on one-week long 00z and 12z forecasts. It showed 
that there is no significant difference among the six experiments in terms of synoptic storm 
environment forecasts. The conclusion is valid for all the wind, temperature and moist fields 
and all forecast hours. Detailed figures can be found in the NOAA/GSD MATS system. As 
examples, Figs. 5.1, 5.2, 5.3, 5.4 show some RMS and bias profiles for these experiments. We 
can see that although there are some differences among difference experiments, these 
differences are very small and not statistically significant.  
 

 
 

Figure 5.1. Wind RMS (left) and Bias (right) profiles for 0-hour forecasts for the CTRL(red), NoRW(blue), 
HEX1(orange) and HEX2(grey) experiments 
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Figure 5.2. Wind RMS (left) and Bias (right) profiles for 3-hour forecasts for the CTRL(red) , NoRW (blue), 
HEX1(orange) and HEX2 (grey) experiments 

 
 

 
 

Figure 5.3. Temperature RMS (left) and Bias (right) profiles for 3-hour forecasts for the CTRL( red), NoRW 
(blue), HEX1 (orange)  and HEX2(grey) experiments 
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Figure 5.4. Temperature RMS (left) and Bias (right) profiles for 3-hour forecasts for the HEX1 (red) and NEX1 
(blue) experiments 

 
 
b.  Verification of individual storms 

 
The statistic verification showed there was no significant difference among the six 
experiments in this study in terms of synoptic storm environment forecasts. This indicate that 
although we assimilated lots of convective-scale radial wind observations, the large scale 
environmental forecasts did not change. This is a positive sign since our goal is to improve 
convective-scale storm forecasts and need to avoid bringing any negative impact to synoptic 
scale environment forecasts. In this section, we will investigate the forecasts of individual 
storms.  
 
Checking the 0h, 1h, 3 h, 6h, 12 h storm forecasts valid at 00:00 UTC 20160910 as an example. 
Fig. 5.5 shows the observed composite reflectivity. Fig. 5.6 compared the 3 h forecasts 
between CTRL and HEX1. We can see that in the northeast corner of Nebraska (indicated by 
the blue circles in the figures), HEX1 predicted more storm cells and stronger storms than 
CTRL, matching observations better. In the southwest corner of Missouri (the red circles), 
CTRL missed a strong storm, while HEX1 predicted this storm very well. This means that when 
we adopt a smaller horizontal impact scale and ensemble localization scale in HEX1, the 
individual storm forecasts are improved. 
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Figure 5.5. Observed composite reflectivity at 00:00 UTC, 20160910  

 

 
Figure 5.6. simulated composite reflectivity from 3h forecasts for CTRL and HEX1 valid at 0Z, 20160910  
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Fig. 5.7 compared the forecasts between NoRW and HEX1. We can see that HEX1 made a 
slight better forecast of storms in the northeast Kansas (the blue circles) and south Missouri 
(the red circles). It is interesting that NoRW successfully predicted the strong storm in the 
southwest Missouri and outperformed CTRL in this situation (Fig 5.7 and Fig 5.6). One possible 
reason for this is that in the CTRL experiment, using large horizontal impact scale (about 300 
km) and large ensemble localization scale (110 km) smoothed too much the convective radial 
wind observations, lost small scale information and may generate some spurious large-scale 
wind field (see Figs. 4.5 and 4.6) which in turn degrades the individual storm forecasts. 

 

 
Figure 5.7. simulated composite reflectivity from 3h forecasts for NoRW and HEX1 valid at 

20160910 00:00 UTC 
 

Fig. 5.8 compared the forecasts between HEX2 and HEX1. We can see there is no evident 
difference between HEX2 and HEX1. This means that in current data assimilation 
configuration, the default superob setting provides enough convective scale information. 
Using smaller superob cells does not yield evident benefits. However, keep in mind that in 
HEX1 and HEX2, the impact scales are about 20 km. If in the future, we elect to use smaller 
impact scale, adopting smaller superob cells may bring extra benefits. 
 
Fig. 5.9 compared the forecasts between NEX1 and HEX1. We can see that HEX1 made a better 
forecast of storms in the east Kansas (marked by the red circles in the figures) than NEX1. The 
storms were stronger and lined up better in HEX1, matching observations better. This 
indicates that although including the GDAS ensemble covariance in the hybrid 3DEnVar does 
improve the analysis evidently, but it does improve forecasts of individual storms. Effort 
should be made to use hybrid 3DEnVar as much as possible in high resolution convective-
scale data assimilation.  
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Figure 5.8 simulated composite reflectivity from 3h forecasts for HEX2 and HEX1 valid at 00:00 UTC, 20160910  
 

 
 

Figure 5.9 simulated composite reflectivity from 3h forecasts for NEX1 and HEX1 valid at 00:00 UTC 20160910  
 

Fig. 4.10 compared the forecasts between NEX1 and NEX2. We can see that NEX2 made 
a better forecast of storms in east Kansas (the blue circles in the figures) and south Missouri 
(the red circles in the figures). NEX2 predicts stronger storms and better line up of storms. 
This indicate that although using smaller superob cells does not bring evident benefits when 
using the hybrid 3DEnVar method (comparison of HEX1 and HEX2), it does improve the 
forecasts when using pure 3DVar. 
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Fig. 5.10 simulated composite reflectivity from 3h forecasts for NEX1 and HEX1 valid at 00:00 UTC 20160910  
 

The above findings are also valid for 1h and 2 h forecasts. After 3 hours, the difference 
between experiment are almost negligible.  
 
5.3 Experiment setups for low resolution RW analysis 

 
Table 5.3 lists the same one-week long retrospective experiments as section 5.1 to study the 
use of radial winds (RW) in low resolution 12-km analysis grid with coarse super-obbing cells. 
All experiments followed similar workflow and configuration as the real-time RAPv4/HRRRv3 
system and assimilate all available conventional observations, radar reflectivity and lightning 
observations, NASA LaRC cloud products and aircraft observations.  
 

Table 5.3 List of experiments and different parameter settings for the assimilation of RW 
Experiment Assimilation strategy for 

RW (radial winds) 
Horizontal scale for 
RW 

Localization 
scale for RW 

Superob setting 

CTRL Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 5deg, 5km, 60min, minimum 50 points 
NoVAD Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 NO VAD wind 
RW12km Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 13deg, 12km, 60min, minimum 50 points 
RW36km Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 42deg, 36km, 60min, minimum 50 points 

 

Three experiments, CTRL, RW12km and RW36km, are conducted to evaluate the forecast 
impact from radial velocity when superobed with coarse superob cells. The NoVAD is to see 
if the impact of VAD assimilations, which is a product retrieved from the radial velocity. All 
four sets of experiments were conducted over a limited domain covering the central U.S, 
and for a period slightly more than one week, starting at 12Z on 03 Sep 2016 and ending at 
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23Z on 10 Sep 2016. For each hourly initialization time in that period (180 total model 
cycles), hourly HRRR forecasts were made out to a lead-time of 12 h. To reduce the volume 
of verification data, the following lead times were examined: 0, 1, 3, 6, 9, and 12 h. The 
NCAR Cheyenne was used for running the experiments. The verification was primarily 
conducted using the Model Evaluation Toolkit (MET) verification system.  

 
5.4 Experiment results for low resolution RW analysis 
 
Both vertical verification against sounding and surface verification against METAR station 
were conducted with MET to compare the model performance for three experiments 
(NoVAD, RW36km, and RW12km) to see which configuration of the radar radial wind 
assimilation resulted in positive impact to the forecast.  
 

a. Vertical verification 
All of the vertical experiment comparison plots show very little visible differences.  Figure 
5.11 shows what may be the largest differences between the experiments out of the entire 
set, which occurred for RMS error for dewpoint temperature for the 6-h lead time. Some 
sort of anomaly seemed to have occurred at this forecast lead time, as some other plots 
show RMS errors as large or larger at 6-h lead time as at the 12-h lead time.  

 
Figure 5.11: Comparison of three experiments and the control run for dewpoint temperature RMS error for 

the 6-h forecast lead time: control (black), NoVAD (green), RW12km (blue), RW36km (red). 
 
But in general, for all variables and all lead times and all levels, the three experiments were 
largely indistinguishable from each other and from the CTRL experiment, as seen in Figure 
5.12. This figure shows that all the confidence bounds for the three experiments overlap 
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each other and those of the control run. The experiment comparison plots for other 
variables for bias show similar results. For completeness, several additional 
variable/statistics are shown. Figure 5.13 shows the temperature RMS errors. Figure 5.14 
shows the bias for zonal wind. Figure 5.15 shows the bias for meridional wind. Slight 
differences are evident, but again, none of the differences are statistically significant. Figure 
5.16 shows the specific humidity bias. Figures 5.17 and 5.18 show the bias and RMS error, 
respectively for relative humidity. To summarize the results of this suite of plots, there is 
little basis to say that one experimental configuration performed better than any of the 
others (or control). 

 
Figure 5.12: As in Fig. 5.11, but now with 95% confidence intervals. 

 

 
Figure .5.13: As in Fig. 5.11, but for temperature RMS error for the 12-h forecast lead time. 
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Figure 5.14: As in Fig. 5.11, but for zonal component wind bias for the 12-h forecast lead time. 

 

 
Figure 5.15: As in Fig. 5.11, but for meridional component wind bias for the 12-h forecast lead time. 
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Figure 5.16: As in Fig. 5.11, but for specific humidity bias for the 12-h forecast lead time. 

 

 
Figure 5.17: As in Fig. 5.11, but for relative humidity bias for the 12-h forecast lead time. 
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Figure 5.18: As in Fig. 5.11, but for relative humidity RMS error for the 12-h forecast lead time. 

 
b. Vertical Experiment Differences 

 
Because the differences between the experiments and control are so slight, it is helpful to 
plot the differences (e.g., experiment – control). These types of plots are particularly handy 
for seeing at a glance whether any differences are statistically significant. Any differences 
that are statistically significant will be indicated by confidence bounds that do not overlap 
the zero-reference line. Figure 5.19 shows an example for the relative humidity bias for the 
12-h lead time for NoVAD – CTRL. At a handful of vertical layers, some statistically 
differences are seen (e.g., 450 hPa, 600 hPa, 800 hPa). Remembering that for the 95% 
confidence level, we expect to see false statistical significance 5% of the time, this example 
shows there is a possibility that there are some significant differences at certain levels, but 
no strong pattern of such differences. Figure 39 displays the NoVAD – CTRL experiment 
differences for RMS error. Again, there are a few statistically significant differences at a few 
middle and lower layers, but most layers are not statistically distinguishable. The difference 
for the RW12km – CTRL experiment and for the RW36km – CTRL are similar, no clear 
pattern and no statistically significant differences (Those plots do not show)  
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Figure 5.19: Plot showing the difference between NoVad and the CTRL experiments for the relative humidity 

bias for the 12-h lead time. Error bars indicate the 95% confidence intervals on the difference. 
 

 
Figure 5.20: As in Fig. 5.19, but for RMS error. 

 
To summarize the full suite of difference plots for each experiment: 

• NoVAD: no systematic improvement or degradation over CTRL. 
• RW36km: no systematic improvement or degradation over CTRL. 
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• RW12km: no systematic improvement or degradation over CTRL. 

These results indicate that the innovations in the various experiments had neutral impact on 
the HRRR model’s performance. While not showing any clear improvements over CTRL, the 
experiments also did not degrade the forecast compared with CTRL. 
 

c. Time Series Comparisons by Initialization Time 
 
To understand how the RMS error and bias characteristics vary across many model cycles, it 
is useful to plot a time series comparison of the verification statistics by initialization time 
for the various lead times. This allows one to see at a glance whether there are model 
“dropouts” when the model performance declines significantly, or whether there are any 
periods when a specific model configuration outperforms others.  These types of plots can 
also show whether there are any diurnal characteristics to the model performance. Figure 
5.21 shows the bias of dewpoint temperature across all initialization times in the 
experiment period for the 12-h forecast lead time for surface observations (ADPSFC). The 
first thing one may note is that there are distinct times during the day when model 
performance tends to be better or worse, however these trends are not completely tied a 
specific time. In general, the forecasts initialized at or just before 12Z tend to be worse, 
while the forecasts initialized around 00Z tend to be the best. This pattern breaks down 
some days however, as noted by relatively poor performance at 00Z on Sep 04. These 
fluctuations in performance may be related to large scale convective events occurring in the 
domain. The next thing to note about this figure is that by and large, the three experiments 
and control are normally very close to each other. In fact, no dropouts are evident in this 
first example.  

 
Figure 5.21: Dewpoint temperature bias for all initialization times for the 12-h forecast lead time: CTRL (black), 

NoVAD (forest green), RW12km (blue), RW36km (red). 
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Figure 5.22: As in Fig. 5.21, but for specific humidity RMS error. 

 
Figure 5.22 shows an example in which the RMS error spiked for one particular initialization 
time (around 12Z on 08 Sep). In this case, all three experiments and CTRL suffered a spike in 
RSM error at 12Z on Sep 08. 
 

 
Figure 5.23: As in Fig. 5.21, but for zonal velocity bias for the 6-h lead time. 

Figure 5.23 shows an example in which the RMS error spiked for one particular initialization 
time (around 12Z on 08 Sep). In this case, CTRL, NoVAD, and RW36km had a spike in the 
bias, but RW12km did not. 
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d. Time Series Differences by Initialization Time 
 
A more detailed picture of the changes in performance across initialization times can be 
seen by taking the difference of the three experiments from the control simulation. This 
allows the relative performance of the experiments to be seen much more easily, although 
one must keep in mind that the vertical range on many of the plots extends over a very 
small set of values. This may magnify very small differences.   
 

 
Figure 5.24: Experiment differences by initialization time for dewpoint temperature RMS error computed from 
surface observations (ADPSFC) for the 12-h lead time: NoVad – CTRL (green); RW12km – CTRL (blue); RW36km 

– CTRL (red). 
 
Figure 5.24 shows how the experiment differences (experiment – control) vary by 
initialization time for the 12-h forecast lead time, computed from surface observations 
(ADPSFC). None of the three experiments offers any consistent performance advantage, 
with each performing better or worse at various times. The NoVAD and RW12km both have 
several notable degradation spikes, but RW36km does not.  
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Figure 5.25: As in Fig. 5.24, but for relative humidity bias for the 1-h lead time. 

 
Figure 5.25 shows the differences by initialization time for relative humidity bias for the 1-h 
lead time. This plot is interesting because it shows the RW12km experiment had some 
notable jumps in bias even at an early lead time.  
 

 
Figure 5.26: As in Fig. 5.25, but for the 12-h lead time. 
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Meanwhile, Fig. 50 shows the situation for the 12-h forecast lead time. The initial jump in 
relative humidity bias has persisted through the forecast, which taken at face value, might 
lead one to think that this indicate some sort of (negative) impact of the radar winds for 
those particular periods for the RW12km experiment. The RMS error for this lead time (not 
shown) does not show a similar degradation however, so it is likely that this may simply be 
due to the noise of looking at individual forecast.  
 

e. Time Series Differences by Forecast Lead Time 
 
The final battery of plots shows how the experiment differences vary by forecast lead time. 
Again, the experiment differences are computed by subtracting the CTRL value of the 
verification statistic from the corresponding value of the experiment (e.g., NoVAD – CTRL). 
For RMS error, the performance of a given experiment is statistically significant positive 
(negative) if the confidence intervals are entirely below (above) the zero-reference line. 
 

 
Figure 5.27: Variation of dewpoint temperature bias computed from surface observations (ADPSFC) by 

forecast lead time for the three experiments: NoVAD – CTRL (forest green), RW12km - CTRL (blue), RW36km – 
CTRL (red). 

 
Figure 5.27 shows how the experiment differences varies by forecast lead time for the three 
experiments. Interestingly, the RW12km experiment has a larger bias across most forecast 
lead times, with statistically significant differences from the CTRL run.  The RW36km also 
has statistically significant biases larger than CTRL at early and intermediate lead times. It 
must be noted, however, that these bias differences are very small.  
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Figure 5.28: As in Fig. 5.27, but for dewpoint temperature RMS errors. 

 
Figure 5.28 shows the picture for the RMS error of dewpoint temperature. The RW12km 
experiment possesses statistically significant differences (degradation) at a couple early lead 
times, but has statistically significant improved performance at the 9 and 10 h lead times. 
The RW36km experiment has statistically significant degraded performance relative to the 
CTRL run at the 4-7  and 12-h lead times. The NoVAD experiment does not have any 
statistically significant differences at any forecast lead times.  
 

 
Figure 5.29: As in Fig. 5.27, but for temperature bias. 

 
Figure 5.29 shows the experiment differences for temperature bias for the three 
experiments. While the biases for NoVAD and RW36km are not notably different from the 
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CTRL run, the RW12km experiment tends to have a tendency toward a low bias, with 
statistical significance at 3 h and 10-12 h. 
 

 
Figure 5.30: As in Fig. 5.27, but for temperature RMS error. 

Figure 5.30 shows the experiment differences for temperature RMS error. All three 
experiments are quite close to the CTRL, expect for a couple periods of statistically 
significant improvement for the NoVAD experiment at 5 and 6 h. 
 
To sum up the broad results of this section, most experiments at most forecast lead times 
were not statistically from the CTRL run, however the RW12km experiment did show some 
statistically significant improvements, mainly for the moisture variables at the longer lead 
times. This hints at the possibility that the innovations in the RW12km experiment had a 
positive impact, compared with CTRL. Beside this one finding for moisture, taken altogether 
with the other batteries of plots, we cannot say that any experiment showed a notable 
pattern of improved performance relative to CTRL. The preponderance of evidence points to 
neutral impact for all three experiments. At best, we can say that there is a hint of positive 
impact for the RW12km experiment for moisture. 
 
 
 

f. FSS for precipitation 
 
Besides the above verification against conventional observations using MET, verification 
against the Stage IV rainfall data, in terms of the FSS (Fractions skill score) method, was also 
conducted. The fractions skill score (FSS) method compares the forecast and observed rain 
fractional coverage within spatial neighborhoods. The fractions skill score is based on 
variation of the Brier score used to verify probability forecasts. The following formulas show 
how to calculate the FSS using the fractional forecast (Pfcst) and observed (Pobs) rain areas 
in each neighborhood. The FSS ranges from 0 for a complete mismatch to 1 for a perfect 
match. 
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 Fractional Brier Score (FBS) = !
"
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FSS=1 − 012
3
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Figure 5.31 shows the FSS score for the four set of experiments (CTRL, NoVAD, RW12km and 
RW36km) for different precipitation threshold (1mm and 2.5mm). Overall the FSS score 
decreases with forecast lead time for both 1mm and 2.5mm and there is no noticeable 
difference between the experiments. This is consistent with the findings from the MET 
verifications that there is no notable improvements for all three experiments, compared to 
the control runs. 
 

 
Figure 5.31  FSS score for the four set of experiments (CTRL, NoVAD, RW12km and RW36km) for different 

precipitation threshold (1mm and 2.5mm). 
 
 
 
 
6. February 20, 2017 Winter Retrospective Study 
 
As discussed in the above sections, the differences between the experiments with 
difference radial velocity assimilation configuration and the control runs are small and the 
impact from tuning the superob parameters are neutral. One factor that might contribute to 
this minimal impact could be due to the limited data volume in the radial wind, especially 
after the strict quality control during the NCEP data processing. In this section we chose a 
winter retrospective case on February 20, 2017, when the radial wind data seems to have a 
better coverage. Since the convective system for this case is mostly in Oklahoma and Texas 
(Fig. 6.1), a new test domain has been set up (Fig. 6.2) and the initial and boundary 
conditions are generated for this new case.  
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Figure 6.1  NEXRAD 1km radar composite at 02:55Z of February 20, 2017. 

 

 
Figure 6.2 The new test domain for the February 20, 2017 case. 

 
6.1 Radar data check 
Along the convective system, two radar stations, KVNX (Vance Air Force Base in Oklahoma) 
and KDYX (Dyess Air Force Base in Texas), were chosen to show the radial wind coverage. 
Figure 6.3 shows the raw radar data from KVNX at 03Z of February 20, 2017 for the scan 
angle at 0.48, both showing a very good data coverage along the storm. Figure 6.4 gives the 
RAP bufr data coverage for scan angle 0.48 and 0.83. Comparing Fig. 6.3 and 6.4, it can be 
seen that the NCEP data processing kept most of the radial wind data from the raw 



 56 

observations. Figures 6.5 and 6.6 are similar to Fig.6.3 and 6.4, but for KDYX. Comparing the 
raw data in Fig. 6.5 and RAP bufr data in Fig.6.6 suggests the radial wind data were kept 
during the NCEP data processing. The NEXRAD level II raw data and RAP bufr data from 
another radar station KSJT also show that good amount of radial wind data was kept after 
the quality control (not shown).  
 
 

 

 
Figure 6.3 NEXRAD Level II radial wind (left) and reflectivity (right) data for KVNX at 03Z of February 20, 2017, 

for scan angle 0.48. 
 

 
Figure 6.4 RAP bufr radial wind data from KVNX at 02:49Z of February 20, 2017, for the first (left, scan angle 

0.48) and second (right, scan angle 0.83) scan. 
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Figure 6.5 Similar to Fig. 6.3, but for KDYX at scan angle 0.48. 

 

 
Figure 6.6 Similar to Fig. 6.4, but for KDYX at scan angle 0.53 (left) and 0.99 (right) at 02:34Z. 

 
6.2 Experiment and results 
The above data coverage analysis suggests that for this new convective case, the radial wind 
data has a much better coverage along the storm and therefore we wanted to see if this 
improved data volume would benefit the storm forecast. Four experiments were conducted, 
as listed in table 6.1 below. 
 

Table 6.1 List of experiments and different parameter settings for the assimilation of RW 
Experiment Assimilation strategy for 

RW (radial winds) 
Horizontal scale for 
RW 

Localization 
scale for RW 

Superob setting 

CTRL Hybrid 3DEnVar at 12 km  0.373,0.746,1.5 h=110, v=3 5deg, 5km, 60min, minimum 50 points 
NoRW n/a n/a n/a n/a 

PWER 

Hybrid 3DEnVar at 12 km 0.373,0.746,1.5 h=110, v=3 Same as CTRL, but reduce observation 
error for radial wind to half, through 
changing erradar_inflate to 0.5 (default 
1) in GSI namelist 

HEX2 Hybrid 3DEnVar at 3 km 0.02487,0.04973,0.1 h=20, v=2 3deg, 3km, 15min, minimum 25 points 
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First, we look at the impact of with/without radial wind assimilation and tuning the BE 
scales by comparing CTRL with NoRW and HEX2. Figure 6.7 shows the 00-hour forecast of 
the maximum derived radar reflectivity for CTRL, NoRW and HEX2, compared to the 
observed, at 03Z of February 20, 2017. As can be seen that the 00-hour forecast of all the 
three experiments tends to produce a weaker than observed convective system at the initial 
time. As time goes by, the model tends to produce stronger than observed convections by 
hour 3 (Figure 6.8) but there is no notable difference among the three experiments.  
 
 

 
Figure 6.7 0-hour forecast of the composite reflectivity for CTRL (upper right), NoRW (bottom left) and HEX2 

(bottom right), compared to the observed (upper left), at 03Z of February 20, 2017. 
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Figure 6.8 Similar to Fig. 69, but for 3-hour forecasts, valid at 06Z of February 20, 2017. 

 
Next, we compare the experiment RWER with the control run, to see the impact of reducing  
radar observation errors, which supposedly would make more use of the observations. 
Table 6.2 shows the contribution of radial wind to the cost function for RWER and CTRL. The 
reduced observation error should increase weight in the cost function, suggesting the GSI 
code is working as expected with regard to the reduced radar observations errors. Figure 
6.9 shows the u-wind (top panels) and v-wind (bottom panels) increments from CTRL (left) 
and RWER (right) at 03Z of February 20, 2017. The two experiments give generally very 
similar increments, with RWER adding a bit more details to the structure. However, these 
differences are too small to produce any notable difference in the storm forecast, as can be 
seen in the hourly precipitation forecast in Figure 6.10.  
 

Table 6.2 Contribution of radial wind to the cost function 
 

 
Before and after 1st outer loop 
(2017022001) 

Before and after 1st outer loop 
(2017022003) 

CTRL 5.19E03 / 1.62E03 1.02E04 / 2.87E03 

RWER 2.04E04 /  5.25E03 3.88E04 / 9.76E03 
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Figure 6.9 Wind increments from CTRL (left) and RWER (right) at 03Z of February 20, 2017. The top panels are 

u-wind and the bottom panels are v-wind. 
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Figure 6.10 Hourly precipitation from the 3-hour model forecast initialized at 03Z of February 20, 2017. The 

top panels are Stage IV observations while the bottom left (right) is from CTRL (RWER) experiment. 
 
 
Verification of the 1-day model forecast (starting at 01Z and ending at 23Z of February 20 
2017, 23 runs) against Stage IV hourly precipitation was conducted using the FSS score, as 
seen in Figure 73. The four experiments show very similar scores, with RWER giving slightly 
better performance for some lead times for heavy rainfall (5mm). This might suggest 
potential benefit from further tuning the observation errors.  
 

 
Figure 6.11 FSS score for the hourly precipitation forecast, verified against the Stage IV observations, for 

threshold 1mm (left), 2.5mm (middle) and 5mm (right). 
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7. Summary 
 

In AOP 2017, we installed the operational RAPv4/HRRRv3 system on the NOAA 
supercomputer Theia. We also ported HRRRv3 on the UCAR supercomputer Cheyenne to 
make it available for community users to test their research ideas based on the operational 
HRRR system. 
 
Before running the experiments, we made substantial efforts to prepare observations, fill up 
missing radar data and get boundary and initial conditions ready. We modified the operational 
RAPv4/HRRRv3 workflows to make them more suitable for research use. This will benefit the 
broad community, making users easier to setup and run the HRRR system for their research 
studies. 
 
Radial wind data in NCEP BUFR files was carefully examined and compared to raw binary 
NEXRAD level II data. It was found that due to strict quality control procedure, lot of good 
radial wind observations were rejected in the NCEP BUFR files. This issue has been 
commuted with NCEP related parties. Currently HRRR GSI uses one-hour time window to 
average radial wind observations to generate radar superob’s and then assimilates these 
superob’s into the model. Hence, in spite of the data missing problem, we still got fair amount 
of radial wind observations to continue our experiments. 

 
The background error covariance impact scale and the GSI superob algorithm was also 
examined in detail. It was found that the default impact scale in current HRRR is too large for 
convective scale radial wind data assimilation. A new set of impact scale parameters 
corresponding to a smaller impact scale was found and proved to be a good choice for future 
convective-scale HRRR applications. A new set of superob parameters was also found and 
proved to keep more small-scale observation details although current default superob 
parameter setting in GSI does not deviate much from convective-scale requirements.  

 
Six one-week long retrospective experiments were conducted to investigate the impact of the 
radial velocity used in high resolution analysis grid with small superob cells. It was found that 
although we added lots of convective-scale radial wind observations into the model, the 
synoptic-scale environment forecasts did not degrade. When checking the individual storm 
forecasts, it was found that as compared to the experiment without radial wind observations, 
current HRRR degrades the individual storm forecasts a little bit due to its using too large BE 
impact scales for high resolution radial wind data. When we adopted a smaller BE impact 
scales and assimilated radial wind data at the 3 km analysis grid, the individual storm forecasts 
were improved as compared to the experiment without radial winds. The benefit of hybrid 
3DEnVar using GDAS ensemble covariance was investigated and it was demonstrated that 
hybrid 3DEnVar can improve individual storm forecasts to some extent. Hence it is 
recommended to use hybrid 3DEnVAR as much as possible if computing resources is 
available. Using smaller superob cells does not bring evident benefits under our hybrid 
3DEnVar settings although it improves individual storm forecasts under the pure 3DVar 
environment. 

 
Another set of four week-long experiments were conducted to study the possible benefit of 
analyzing radial velocity over coarse analysis grid with large superob cells. This set of model 
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forecasts were verified using MET. The vast preponderance of verification results showed 
that the three experiments had neutral impact on the forecast performance. For the 
moisture variables, there was a slight hint of statistically significant improvement at several 
intermediate to later forecast lead times when the surface verification results were 
aggregated together. In the vertical, no clear advantages were seen for any experiment. This 
picture did not change notably when looking across individual forecasts (across all forecast 
initialization times). While certain periods had some dropouts of degraded performance, 
there were no clear picture that any experiment performed worse than any other. Results 
were largely consistent with the noise one would expect from comparing individual model 
forecasts.  
 
A new one-day experiment for winter in February 2017 suggests that with good amount of 
radar data volume, tuning the radar observation errors might bring some potential benefit to 
the storm forecast. More work needs to be done in this area. 

 
 

Research findings from the above study were shared through several conference 
presentations 

• Guoqing Ge, and M. Hu, J. Beck, C. Zhou, H. Shao, S. Weygandt, S. Benjamin, and C. 
Alexander, 2018: Assimilating Radial Winds into the High-Resolution Rapid Refresh (HRRR) 
Model and Its Impact on Storm Forecasts.  AMS 2018, Austin, TX in January 2018. 12.4 

• Chunhua Zhou, and M. Hu, Y. Zhang, and G. Ge, 2018: Testing and Evaluation of the Radar 
Data Assimilation and Its Impact on Convective Forecast for the 3-Km High Resolution 
Regional Applications.  29th Conference on Weather Analysis and Forecasting/25th 
Conference on Numerical Weather Prediction, Denver, CO 06/03-06/08, 2018, 56 

• Zhou, Chunhua, and Ying Zhang, Guoqing Ge, Ming Hu, Jonathan Vigh, 2018: Testing and 
evaluation of the radar data assimilation for high resolution convective forecasts. WRF 
Workshop, 06/11-06/15, 2018, Boulder 

• Ming Hu, and G. Ge, C. Zhou, C. R. Alexander, and S. Weygand, 2018: Building Functional 
Similar Testing System for Community Researchers to Contribute Operational Storm-Scale 
Data Assimilation. 29th Conference on Weather Analysis and Forecasting/25th Conference 
on Numerical Weather Prediction, Denver, CO 06/03-06/08, 2018, 7B4 

• Guoqing Ge, and M. Hu, C. Zhou, J. Beck, S. Weygandt, and C. Alexander, 2018. Further 
Improvements of Radial Wind Assimilation in the High-Resolution Rapid Refresh (HRRR) 
model. 29th Conference on Weather Analysis and Forecasting/25th Conference on 
Numerical Weather Prediction, Denver, CO 06/03-06/08, 2018, 7B5 
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Appendix A: Apply MET for HRRR functionally similar testing system 

Verification is part of the HRRR functionally similar testing system. Because the NOAA HRRR 
test system use MATS, which is only available for NOAA machine, we employed MET as 
verification system for community HRRRR functionally similar testing system.  

The following sections describe the attributes of the observations used in the verification, 
the verification protocol, the results of the T&E activity. 

 
A1. Data 

The HRRR experiment simulations were verified against the observations contained in 
PREPBUFR files from the RAP modeling system. The observations in these PREPBUFR files 
was also used as the basis for the routine observations (apart from the radar wind data) that 
were assimilated by the HRRR experiments that were conducted. To better understand the 
characteristics of the observational data, this section analyzes the availability of 
observations during the 24-h period beginning at 00Z on Sep 3.  

Observations were reported for nine different message types in the PREPBUFR files during 
the 24-h period. Table A1 lists the mnemonic short-hand identifiers and a description of the 
types of data included. Because HRRR is initialized on an hourly cycle, it was prudent to 
select a time window centered on the analysis/verification time whose width was less than 
or equal to the time between initialization times (selecting a longer time windows longer 
would result in observations being used more than once). Thus, the observations availability 
was analyzed for two time windows: +/- 15 minutes from the analysis time, and +/- 30 
minutes from the analysis time.  Fig. A1.1 shows examples of plots that were created at 3-
hourly intervals to display the spatial and temporal distribution of observations near each 
analysis time, with Fig. A1.1a showing the locations of all observations reported within +/- 
15 min of the target time (00Z on 03 Sep 2016), and Fig A1.1b showing the observations 
within +/- 30 min of the target time.  It should be noted that there is only one wind profiler 
site still in operation (near Houston, TX). The most noticeable difference between the two 
time windows is that a +/- 30 min time window captures significantly more aircraft 
observations. 

 
The number of observations was then tabulated every 3 h and analyzed by message type, by 
time of day, and by the width of the observational time window.  Table A2 summarizes this 
information through the 24-h period. In terms of the contribution to the total number of 
observations, MSONET contributed the most observations by far, followed by the VADWND,  
and AIRCAR. The ADPSFC and ADPUPA message types also contributed significant numbers 
of observations. In comparison, there were fewer observations for the SFCSHP, PROFLR, and 
RASSDA message types.  Looking at variations over the 24-h period, the 12Z period had the 
most observations, followed closely by the 00Z period. The 18Z period had the least number 
of observations. 
 



 65 

Mnemonic Description 
ADPUPA UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS 
AIRCAR MDCRS ACARS AIRCRAFT REPORTS 
AIRCFT AIREP, PIREP, AMDAR, TAMDAR AIRCRAFT REPORTS 
SATWND SATELLITE-DERIVED WIND REPORTS 
PROFLR WIND PROFILER AND ACOUSTIC SOUNDER (SODAR) REPORTS 
VADWND VAD (NEXRAD) WIND REPORTS 
SATEMP POES SOUNDING, RETRIEVAL, RADIANCE DATA (TOVS) 
ADPSFC SURFACE LAND (SYNOPTIC, METAR) REPORTS 
SFCSHP SURFACE MARINE (SHIP, BUOY, C-MAN/TIGE GAUGE PLATFORM) REPORTS 
SFCBOG MEAN SEA-LEVEL PRESSURE BOGUS REPORTS 
SPSSMI DMSP SSM/I RETRIEVAL PRODUCTS (REPROCESSED WIND SPEED, TPW) 
SYNDAT SYNTHETIC TROPICAL CYCLONE BOGUS REPORTS 
ERS1DA ERS SCATTEROMETER WIND DATA (REPROCESSED WIND SPEED) 
GOESND GOES SOUNDING, RETRIEVAL, RADIANCE DATA 
QKSWND QUIKSCAT SCATTEROMETER WIND DATA (REPROCESSED) 
MSONET MESONET SURFACE REPORTS 
GPSIPW GLOBAL POSITIONING SATELLITE-INTEGRATED PRECIPITABLE WATER AND 

TOTAL ZENITH DELAY REPORTS 
RASSDA RADIO ACOUSTIC SOUNDING SYSTEM (RASS) VIRTUAL TEMPERATURE 

PROFILE REPORTS 
WDSATR WINDSAT SCATTEROMETER WIND DATA (REPROCESSED) 
ASCATW ASCAT SCATTEROMETER DATA (REPROCESSED) 

 

Table A1: Current Table A Entries in NCEP’s PREPBUFR mnemonic table. Bolded entries denote message types 
for which data were found in the observations analysis period on 03 Sep 2016. [This table was excerpted from 

NCEP’s Table 1.a, which can be found at: 
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_1.htm.] 

 
 

 
Table A2: Summary of the number of observations that were reported in the PREPBUFR files for each of the 
message types at 3-h intervals. Green-shaded columns show values based on a +/- 15-min time window, and 

tan-shaded columns show values based on a +/- 30-min time window. 
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Figure A1.1: Locations of all observations available in PREPBUFR within the given time windows: a) (left 
panel) all observations within +/- 15 min of the target time; b) (right panel) all observations within +/- 30 

min of the target time.  Each observation is indicated by dots whose colors denote different message types: 
upper air soundings (APDUPA, red), aircraft observations (AIRCAR, lime green; AIRCFT, dark green), wind 
profiler and acoustic SODAR (PROFLR, purple), VAD (NEXRAD) wind reports (VADWND, orange), surface 

observations (ADPSFC, black; MSONET, grey), marine surface observations (SFCSHP, dark blue), and radio 
acoustic sounding system virtual temperature reports (RASSDA). 

 
 
 
Some observations types displayed a distinct diurnal cycle in availability (Fig. A1.2). 
Interestingly, MSONET and SFCSHP had significantly more observations at 12Z and 00Z than 
at other times. From the full set of spatial and temporal plots (not shown), it is evident that 
some mesonets are only reporting twice a day. These include certain observing networks 
that appear to be situated along railroads. Apparently, some co-op observing network 
observations are also reported in MSONET twice a day (as seen over Colorado; not shown). 
As expected, the radar-based VADWND observations follow a cycle of availability that 
appears closely tied to convective and precipitation activity, with a diurnal maximum at 03Z 
and a diurnal minimum at 15Z and 18Z. The aircraft-related observations (AIRCAR and 
AIRCFT) show a distinct diurnal variation in observational availability that is linked with the 
airline schedules. From a distinct minimum during the overnight hours (06Z), the number of 
aircraft observations increases near daybreak and reaches a daily maximum at 15Z when the 
most planes are in the air. The number of aircraft observations holds relatively steady until 
03Z when nearly all domestic flights cease. ADPSFC has less relative fluctuations throughout 
the 24-h period, but there were some diurnal variations, with the most observations 
occurring at 00Z and 18Z, and the fewest observations occurring at 0Z and 12Z. Finally, 
upper air rawinsonde observations (ADPUPA) normally only report at 12Z and 00Z; there 
were slightly more observations at 12Z than 00Z.   
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Figure A1.2: Diurnal variations in observational availability for the various message types. 

0

100,000

200,000

300,000

400,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

All Message Types

15,800
16,000
16,200
16,400
16,600
16,800
17,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

ADPSFC

0

5,000

10,000

15,000

20,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

ADPUPA

0

10,000

20,000

30,000

40,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

AIRCAR

0
50,000

100,000
150,000
200,000
250,000
300,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

MSONET

0
200
400
600
800

1,000
1,200

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

SFCSHP

0

20,000

40,000

60,000

80,000

100,000

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

VADWND

0
5

10
15
20
25
30

00Z 03Z 06Z 09Z 12Z 15Z 18Z 21Z

AIRCFT



 68 

 
Table 3: Effect of increasing the observation window time width, by time and message type. The percent 
increase of the number of observations for a 30-min time window is shown, compared to a 15-min time 

window. Warm colors denote relatively small percentage increases (25-75%, representing less than a doubling 
of the number of observations); yellow shades denote increases near 100% (a doubling in the number of 
observations), and green shades denote significantly larger increases (>200%, or a tripling or more in the 

number of observations). 
 

The impact of increasing the observation time window width was also analyzed (Table A3). 
Interestingly, doubling the window time did not typically double the number of 
observations. This is mainly a factor of the typical reporting interval of each message type. 
For many message types, the percentage increases for the 30-min time window relative to 
the 15-min time window were less than a double (e.g., +32-39% for ADPSFC, +52-90% for 
MSONET). For other message types, larger percentage increases were seen (+47-114% for 
AIRCAR, +71-102% for VADWND, +98-167% for SFCSHP, and +82 to +322% for PROFLR).  
In summary, this section investigated the availability of observations in the RUC PREPBUFR 
files, examining the relative contributions by each message type, the diurnal variations of 
each message type, and the impact of increasing the observational time window. In brief, 
MSONET, VADWND, and AIRCAR contribute the most number of observations by far, with 
significant contributions from ADPSFC and ADPUPA. Several message types display a distinct 
diurnal cycle in the availability of observations (MSONET, SFCSCHP, AIRCAR, and VADWND). 
Increasing the time window did not result in a uniform doubling of observational availability, 
but rather a spectrum of increases ranging from ADPSFC on the low side, to PROFLR, 
RASSDA, and SFCSHP on the high side.  
 
A2. Verification protocol 
MET is a widely used verification system developed through a long collaboration by the 
Development Testbed Center and NCAR’s Joint Numerical Testbed. This verification study 
used MET v6.1, which although not quite as new as the very recent v7.0 release, is likely 
more stable with less bugs. Two MET utilities were used for this verification exercise: pb2nc 
and point_stat. Both of these were run on NCAR’s Cheyenne supercomputer using a simple 
job submission script that was developed to facilitate rapid processing of the verification 
jobs. The statistics output was then uploaded into a mySQL database on a local NCAR server 
and where plots were generated using METViewer’s batch processing engine. This section 
will describe the MET configurations used for these tools and provide links to the specific 
configuration files and codes that were used. 
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First, it should be noted that all codes and configuration files used in this verification activity 
have been placed under version control and placed in NCAR’s institutional GitHub repository 
at https://github.com/NCAR/ral-jvigh-verification. By providing the full code and 
configuration files used, the full details of the verification protocol are preserved for future 
reference. This should facilitate more rapid verification studies for future T&E activities of 
the DTC DA Task. Public access is currently turned off. To request access to this repository, 
please e-mail Jonathan Vigh (jvigh@ucar.edu). If it would be useful, the repository can be 
made public in the future. 
 
pb2nc configuration 
The pb2nc utility converts the observations from PREPBUFR to NetCDF. To use this utility, 
any existing restrictions were removed for filtering based on message types, station IDs, 
observational mask regions. The number of vertical levels to retain was updated from 255 to 
511. The configuration entry for the BUFR variables to be retained ‘obs_bufr_var’ was 
updated and the mapping to MET’s variables (‘obs_prepbufr_map’) was correspondingly 
updated. Table A4 provides the correspondence between the PREPBUFR variable names and 
the MET variable names.  
 

PREPBUFR variable name MET variable name Description 
POB PRES Pressure 
QOB SPFH Specific humidity 
TOB TMP Temperature 
ZOB HGT Geopotential height 
UOB UGRD U-component wind speed 
VOB VGRD V-component wind speed 
D_DPT DPT Dewpoint temperature 
D_WDIR WDIR Wind direction 
D_WIND WIND Wind speed 
D_RH RH Relative humidity 
D_MIXR MIXR Mixing ratio 
D_PRMSL PRMSL Mean sea level pressure 

 

Table A4: Correspondence between the variable names in PREPBUFR and MET, along with a description. 
PREPBUFR variable names prefixed with ‘D_’ indicated that these quantities are derived from other variables. 

 
This verification study focuses just on PRES, SPFH, TMP, UGRD, VGRD, WIND, and RH.  
Importantly, the quality mark threshold (‘quality_mark_thres’) was set to a value of 3, which 
uses PREPBUFR’s quality flag to determine which observations to include in the verification. 
This means that MET will include all observations with quality markers of 0 through 3, which 
are as follows:  

• 0: ‘keep’ observations (always assimilated) 
• 1: ‘good’ observations 
• 2: ‘neutral’ observations or not checked (default) 
• 3: ‘suspect’ observations. 

Typically, all observations with quality markers of 0 through 3 are assimilated, and all 
observations with higher quality marker values are rejected. Thus, our protocol is following 
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the standard verification practice of not including any observations which would normally 
be rejected for purposes of data assimilation.  
The full configuration file for pb2nc can be viewed by those with repository access at: 
https://github.com/NCAR/ral-jvigh-
verification/blob/master/MET_config/PB2NCConfig_HRRR.DA_task 
 
point_stat configuration 
Once the observations have been converted to NetCDF by pb2nc, the next task is to 
generate matched pairs using MET’s point_stat utility. This step involves taking all available 
observations and interpolating from the simulation to the location and pressure of the 
observation to generate matched pairs. Then partial sums (SL12L1) lines are aggregated for 
all of these matched pairs according to the specifications of the user for the specified 
initialization times, forecast lead times, or vertical layers. Results can have aggregated for 
many types of observations or limited to just one observation type (e.g., surface 
observations, upper air soundings, aircraft data, etc.).   
 
MET offers many options for how these horizontal and vertical interpolations are 
accomplished. This verification used bilinear interpolation in the horizontal direction 
(width=2 and valid_ threshold=0.5).  
 
A rather critical option is the choice of time threshold that will be used to set the window of 
allowable observations, relative to the forecast valid time of the model output being 
verified. Based on the previous analysis of observational availability, it was deemed that 
sufficient observations were available to use a time window of +/- 900 s (+/- 15 min). This 
also happens to be MET’s default. 
 
For wind speed, count statistics are not computed for winds of less than 2.572 m s-1; this is 
in accordance with long-standing practice since wind speeds below this threshold tend to 
have variable directions.  
 
No censor threshold or censor values were used. The continuous statistics logic and wind 
logic were set to use ‘UNION’.   
 
MET allows users to specify the vertical layers or levels over which partial sums will be 
aggregated. This plays an important role in the design of the verification study, and the 
thickness of layers chosen must be optimized to balance the following factors: 

• observational availability (a meaningful number of observations must be present 
within the layer over the timescales of interest; using levels too close together may 
result in adequate data) 

• meaningful statistical significance (using layers that are too close together may lead 
to confidence intervals that are over-confident), 

• accuracy (using levels too far apart will result in interpolation errors which will cloud 
the results), and 

• vertical resolution (layers that are too far apart will not provide detailed enough 
picture of the vertical structure of errors).  
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Most of the DTC’s past verification studies have used the upper air soundings and examined 
just the mandatory levels (e.g., 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 50 
hPa). For a high-resolution model like the HRRR, it was decided to look in more detail at the 
vertical structure and to also examine the characteristics of other type of observational data 
that exist throughout the troposphere (e.g., aircraft observations, etc.). Thus, the point_stat 
configuration file was crafted to examine overlapping 50-hPa thick layers. The layer-
centered pressures ranged from 975 hPa (near the surface) up to 75 hPa in the upper 
atmosphere. Specifically, the layers were interspersed at 25-hPa intervals: 1013.2-975, 
1000-950, 975-925, 950-900, 925-875, 900-850, 875-825, 850-800, 825-775, 800-750, 775-
725, 750-700, 725-675, 700-650, 675-625, 650-600, 625-575, 600-550, 575-525, 550-500, 
525-475, 500-450, 475-425, 450-400, 425-375, 400-350, 375-325, 350-300, 325-275, 300-
250, 275-225, 250-200, 225-175, 200-150, 175-125, 150-100, 125-75, 100-50 hPa. Given that 
the post-processed model output is available at 25-hPa intervals, this means that no 
observation was more than 12.5 hPa away from a model output level. While there will 
undoubtedly be some vertical interpolation errors, they should be relatively small. In this 
study, upper atmosphere verification was conducted for two sets of observational types: a) 
just upper air soundings (ADPUPA), and b) all upper observations types including upper air 
soundings (ADPUPA), both types of aircraft observations (AIRCRFT and VADWND), and 
radar-derived wind analyses (VADWND), and acoustic profilers (PROFLR). While verification 
statistics have been computed for both sets of upper air data, the inter-comparison of the 
different upper air observation types (to be shown later) suggests that only the upper air 
soundings and aircraft observations have error characteristics that are reasonable for use in 
this verification study.  
 
Surface verification uses the following observation types: METAR and SYNOP reports 
(ADPSFC), mesonet observations (MSONET), and surface ship reports (SFCSHP). 
Temperature and moisture variables (TMP/DPT/RH/SPFH) are verified at the standard 2-m 
observing height above ground (which corresponds to the Z2 model level). Wind data 
(UGRD/VGRID/WIND) are verified at the standard 10-m observing height above ground 
(which corresponds to the Z10 model level).   
 
Output was provided for the following line types: contingency table counts and statistics 
(FHO, CTC, CTS), multiple categorical thresholds (MCTC, MCTS), continuous statistics (CNT), 
partial sums (SL1L2, SAL1L2, VL1L2, and VAL1L2). Initially, the full matched pair lines (MPR) 
were also included, however this lead to a very large volume of data (510 GB per 
experiment) that took 3.5 hours to load into METViewer’s XML Database. When point_stat 
was rerun without matched pair output lines, the total volume of data was much more 
manageable (3 GB per experiment) and was able to be loaded rapidly into the database.   
 
 
The full configuration file for point_stat can be obtained for approved repository viewers at: 
https://github.com/NCAR/ral-jvigh-
verification/blob/master/MET_config/PointStatConfig_COMBINED_HRRR.DA_task_both_int
erpolation_and_exact_pressure_match (r17) 
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Plot Generation 
 
METViewer’s batch plotting engine was used to generate the various plots of verification 
results. This utility allows a user to define an XML file containing options which define the 
set of plots that will be generated. The batch engine, which is controlled by the 
mv_batch_script.sh, can loop over various dimensions of the defined workflow, thereby 
creating many plots from one XML file. For this project, an XML file was created for each 
major set of plots, resulting in 25 XML files. These files can be found in the following 
location: 
 
https://github.com/NCAR/ral-jvigh-verification/tree/master/metviewer/xml/xml_generate_plots 
 
Table A5 provides a list of the XML files that were created for this T&E activity, provides the 
status of the XML file (whether the file is considered ‘final’ or whether additional 
improvements could be made), and the number of plots in the set.  
 

XML Template Name Status # of plots 
in 

set 

 
Vertical Layers Plots 

 
observations-comparison 

template_da_radar_vert_obs-comparison_CTRL_ADPUPA-AIRCAR-AIRCRFT-
PROFLR-VADWND_bootCI_layers final 36 

template_da_radar_vert_obs-comparison_CTRL_ADPUPA-
AIRCAR_bootCI_layers final 84 

xml_template in template_da_radar_vert_obs-
comparison_CTRL_ADPUPA_bootCI_layers final 84 

xml_template in template_da_radar_vert_obs-
comparison_CTRL_AIRCAR_bootCI_layers final 84 

 
experiment-comparison 

template_da_radar_vert_experiment-comparison_CTRL-NoVAD-RW12km-
RW36km_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment-comparison_CTRL-
NoVAD_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment-comparison_CTRL-
RW12km_OBS_bootCI_layers final 168 
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template_da_radar_vert_experiment-comparison_CTRL-
RW36km_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment_comparison_CTRL-NoVAD-RW12km-
RW36km_OBS_noCI_layers final 168 

template_da_radar_vert_experiment_comparison_CTRL-
NoVAD_OBS_noCI_layers final 168 

template_da_radar_vert_experiment_comparison_CTRL-
RW12km_OBS_noCI_layers final 168 

template_da_radar_vert_experiment_comparison_CTRL-
RW36km_OBS_noCI_layers final 168 

 
experiment-differences 

template_da_radar_vert_experiment-differences_CTRL-NoVAD-RW12km-
RW36km_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment-differences_CTRL-
NoVAD_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment-differences_CTRL-
RW12km_OBS_bootCI_layers final 168 

template_da_radar_vert_experiment-differences_CTRL-
RW36km_OBS_bootCI_layers final 168 

 

Times Series Plots 

 
experiment-comparison-by-lead-time 

(an XML file for this plot type was not prepared) 
  

 
experiment-comparison-by-initialization-time 

template_da_radar_time-series_experiment-
comparison-by-init-time_CTRL-NoVAD-

RW12km-RW36km_ADPSFC_noCI 

could be 
rerun 
with 

fixed 
ranges 

 

 
experiment-differences-by-lead-time 
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template_da_radar_time-series_experiment-differences-by-lead-time_CTRL-
NoVAD-RI12km_RW36km_ADPSFC_bootCI final 14 

template_da_radar_time-series_experiment-differences-by-lead-time_CTRL-
NoVAD_ADPSFC_bootCI final 14 

template_da_radar_time-series_experiment-differences-by-lead-time_CTRL-
RW12km_ADPSFC_bootCI final 14 

template_da_radar_time-series_experiment-differences-by-lead-time_CTRL-
RW36km_ADPSFC_bootCI final 14 

   

 
experiment-diff-by-init-time 

template_da_radar_time-series_experiment-diff-by-init-time_CTRL-NoVAD-
RW12km-RW36km_ADPSFC_bootCI final 84 

template_da_radar_time-series_experiment-diff-by-init-time_CTRL-
NoVAD_ADPSFC_bootCI final 84 

template_da_radar_time-series_experiment-diff-by-init-time_CTRL-
RW12km_ADPSFC_bootCI final 84 

template_da_radar_time-series_experiment-diff-by-init-time_CTRL-
RW36km_ADPSFC_bootCI final 84 

 
Table A5: List of the XML files that were created for this T&E activity. First column: filename of the XML file; 

second column: status of the XML file (whether the file is considered ‘final’ or whether additional 
improvements could be made); third column: number of plots in each set. 

 
 
A3. Verification Results 
The major goal of this T&E verification activity is to compare the model performance for 
three experiments (NoVAD, RW36km, and RW12km) to see which, if any, method of 
treating the radar wind assimilation resulted in positive impact to the forecast accuracy. As 
detailed in Table 6, a number of suites of plots were generated. This section will summarize 
the findings from these. The vertical observations comparison plots are examined first, in 
which the impact of the observations type on the verification statistics are examined for the 
various levels to learn which observation types may be warranted for use in the verification, 
and whether there are any important differences between vertical regions of the 
atmosphere.  Following this subsection, the vertical experiment comparisons are presented, 
in which the performance of the three experimental configurations are compared relative to 
the control run for the various vertical levels. Following that, vertical experimental 
differences are presented to determine if the close-up examination of differences relative to 
control tells any story. After that, the experiment performance will be examined across 
forecast lead times and initialization times to learn whether the performance of the 
experiments varied significantly across different forecast periods or initialization cycles.  
 
 
 
Vertical Observations Comparisons 
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Before examining the relative performance of the three experiments, however, the vertical 
structure characteristics of the various upper air observations was compared. This was 
accomplished by plotting the verification statistics for the CTRL run for each observation 
type. One illustrative example is shown in Fig. A1.3 and A1.4. These plots show the Wind 
Bias for the 12-h forecast lead time for the ADPUPA, AIRCAR, AIRCFT, PROFLR, and VADWND 
observation types. One can immediately see that CTRL verified against ADPUPA and AIRCAR 
have a relatively small bias, while the other types have much larger biases. Notably, AIRCFT 
only has data in the layers between 350 and 150 hPa. The biases and RMS errors were 
significantly larger than for AIRCAR at these levels. Another striking feature is the very large 
sinuous bias structure in the vertical for the VADWND observation type. Similarly, RMS 
errors for the VADWND observations are much larger than any of the other observation 
types. Verification statistics computed using PROFLR observations are only available in the 
lower portion of the troposphere, however the verification statistics for this observation 
type match well with those computed using the ADPUPA and AIRCAR observations types. It 
is noted that most wind profiler stations were decommissioned prior to this experiment, so 
within the verification domain, there was only one profiler in operation (near Houston, TX). 
Finally, the vertical bias and RMS error structures computed using ADPUPA and AIRCAR 
observations match quite well, although the biases computed using ADPUPA were 
somewhat larger than those computed using AIRCAR. The plots also show bootstrap 
confidence intervals, which provide an estimate on the uncertainty of the verification 
statistics. In general, having more high-quality observations will result in smaller confidence 
intervals, while having fewer observations of lower quality results in larger estimates of 
uncertainty. From these figures, it is easy to see that VADWND, PROFLR, and AIRCFT all have 
relatively large uncertainties associated with their estimates of the verification statistic, 
while ADPUPA and AIRCAR have quite small confidence intervals (with AIRCAR being the 
smallest). This suggests that AIRCAR and ADPUPA are both suitable for use in this 
verification activity, but the other observation types have significantly large uncertainty that 
their use is not recommended.  The plots for other lead-times and forecast parameters are 
similar and are not shown.  Based on the findings from this set of plots, additional 
exploration of the impact of observation type was limited to just the AIRCAR and APDUPA 
observation types.    
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Figure A1.3: Comparison of the vertical structure of the wind speed bias computed for the CTRL experiment 

using five different observation types: ADPUPA (red), AIRCAR (green), AIRCFT (orange), PROFLR (blue), 
VADWND (black). The total number of aggregated SL1L2 lines is shown on the right axis. 95% confidence 

intervals on the estimates are also shown. This plot includes all of the forecasts which had verifying 12-h lead 
times in the period 12:00 UTC on 09/03/16 12:00 – 23:00 UTC on 09/10/16. 

 
Figure A1.4: Same as Figure A1.3, but for the RMS error of wind speed. 
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Due to the large number of plots in the ADPUPA vs. AIRCAR comparison, just a few 
illustrative plots will be shown for a couple variables, with the rest of the results 
summarized qualitatively. Figure A1.5 shows the RMS error for the 12-h forecast lead time 
for temperature. For this variable and statistic, the results using either observation type are 
largely similar, however some differences are evident at upper levels, with the verification 
based on AIRCAR having somewhat larger errors. Also, of note, the results based on the 
AIRCAR observations do not extend above about 200 hPa, as commercial aircraft do not 
normally fly higher than this pressure level. One final feature to note in this plot is that the 
uncertainty on the RMS error is larger for ADPUPA than for AIRCAR. This is likely owing to 
the greater number of AIRCAR observations, compared to the relatively fewer ADPUPA 
observations.  Figure 29 shows the temperature bias for the 12-h forecast lead time. The 
verification statistics using each observation type are very similar at lower and middle levels, 
with major differences only apparent above about 325 hPa. For dew point temperature, the 
two observations result in similar verification statistics except near the surface, where the 
verification statistic computed using ADPUPA has significantly smaller RMS errors than 
those computed using AIRCAR. At upper levels, the confidence bounds overlap at most 
levels, indicating that they are not statistically distinguishable. Similar patterns are seen for 
relative humidity and specific humidity, with statistically significant differences occurring 
largely at the lower levels. For wind, the two observation types result in largely similar 
results for the verification statistics at most levels, however for the meridional wind, 
significant differences are seen in the lower and middle troposphere for the bias statistic. 
This pattern also shows up in the statistics for total wind speed. All in all, this suite of 
observational comparisons suggests that the ADPUPA and AIRCAR are generally of high 
quality and produce verification results that are largely similar to each other. This means 
that either could be used in the remainder of the verification study. For simplicity, we will 
focus on the results using ADPUPA.    

 
Figure A1.5: Comparison showing RMS error for temperature computed for the 12-h lead time using ADPUPA 
(red) and AIRCAR observations (green). The number of SL1L2 aggregations at each level is shown on the right 

axis. Error bars shown the 95% confidence intervals. 
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Figure A1.6: As in Fig. 1.5, but for temperature bias. 
 
 
A4. Discussion of differences between results from MET and MATS 
 
While MET was used as the primary verification system for this T&E activity, the verification 
results for the CTRL run were compared to those from GSD’s MATS verification system. 
Some noticeable differences occurred, primarily for the RMSE metric.  
 
To undertake this comparison, the output statistics of both verifications systems were 
captured as text files, then reformatted and aggregated in a spreadsheet so that they could 
be turned into clean ASCII text files that could be read by an NCAR Command Language 
(NCL) script. While each verification system utilized a different method and definitions for 
the vertical layers, this allowed the results to be plotted on the same plot and compared 
directly. Figure 1.7 shows the comparison for relative humidity bias for four different lead 
times. Note that MET did not computed verification statistics for the layers above 300 hPa 
due to the expected poor accuracy of relative humidity data in the upper atmosphere. 
These plots show that the relative humidity bias is very similar between two verification 
systems.  Figure A1.8 shows the comparison for relative humidity RMS errors.  
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Figure A1.7: Comparison of MATS (blue) and MET (red) verification statistics for the various vertical layers for 
relative humidity bias at: 00h (upper left), 01 h (upper right), 06 h (lower left), and 12 h (lower right). 
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Figure A1.8: As in Figure A1.7, but for relative humidity RMS errors. 
 
 
Now there are clear differences between the verification system, with MET giving larger 
RMS errors at all forecast lead times and for all vertical layers. A similar pattern is seen for 
the temperature biases (Fig. A1.9). The vertical structure of both verification systems 
interweaving together with height meaning that they are essentially indistinguishable from 
each other. But for the temperature RMS errors (Fig. A1.10), the MET verification system 
provides larger RMS errors than for MATS. The differences are not as great as were noted 
for relative humidity, but they are consistent across all vertical layers and for all lead times. 
For the wind speed biases (Fig. A1.11), again the biases are practically indistinguishable 
between the two verification systems. For wind speed RMS errors (Fig. A1.12) however, this 
time MATS has the larger RMS errors and MET has smaller errors. This is true for all vertical 
layers except one (600 hPa) at the 6-h lead time when they were essentially the same. 
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Figure A1.9 : As in Figure A1.8, but for temperature biases. 
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Figure A1.10 : As in Figure A1.9, but for temperature RMS errors. 
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Figure A1.11: As in Figure A1.10, but for wind speed biases. 
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Figure A1.12 : As in Figure A1.11, but for wind speed RMS errors. 
 
To attempt to understand the differences seen between the two verification systems, the 
MATS developers were contacted to find out if any methodological differences may be the 
cause. MATS uses a different approach to MET, in that it generates matched pairs by 
interpolating both the observations and the model data to the nearest 10 hPa level. From 
these matched pairs, MATS computes partial sums (SL1L2) lines an aggregate these for 50-
hPa thick layers (every 50 hPa). These are the values seen in the plots. In MET, there is 
flexibility how the matched pairs can be generated. For this verification task, it was decided 
to use the observations at their native pressure level, and to vertically interpolate the model 
data to the level of the observation. Then the partial sums (SL1L2) lines are computed and 
aggregated for overlapping layers 50-hPa thick (every 25 hPa). The approached used in MET 
has the advantage that the observations do not have to be interpolated at all. The vertical 
distance over which the model data are interpolated depends on the vertical spacing of the 
model layers. In MET, the post-processed model output is available every 25 hPa. It is not 
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clear what model data are used in MATS (post-processed or native). One other possible 
significant difference between the two verification systems is that MET obtains the vertical 
sounding data from the PREPBUFR files that are used to initialize the model. MATS, on the 
other hand, uses an internal GSD database that has some quality control measures applied 
(occasionally, a bad sounding will be excluded).  
Despite these methodological differences, it is still unclear exactly why the differences 
between the two verification systems occur. The fact that the vertical bias structures are 
essentially indistinguishable between the two systems suggests that whatever interpolation 
errors are occurring essentially cancel out by the time the aggregation to the 50-hPa layers 
occurs. The differences in RMS errors, however, suggests that the interpolation errors may 
not be entirely benign. The fact that MET has higher RMS errors for relative humidity and 
temperature, both of which may be strongly affected by interpolation errors, while MET has 
smaller RMS errors for wind speed (which might be expected to be less affected by 
interpolation errors), suggests the possibility that interpolation errors in MET’s method and 
design could be causing these differences. However, the effect of using different input data 
cannot be ruled out. It is clear that more investigation will be needed to fully understand 
the differences between the two systems.  
The investigation uncovered one other interesting fact. It had been thought that the 
PREPBUFR provided the high-resolution soundings, however after analysis, it became 
evident that the sounding data is quite coarse, sometimes with 50 hPa or more in between 
observations as the balloon ascended. To further analyze this, MET’s stat_analysis utility 
was used to analyze the SL1L2 partial sums lines. Statistics from these was then analyzed in 
an Excel spreadsheet (Fig. A1.13). This turned up some interesting findings: 

• At best, there are 9 obs per 50-hPa layer at ~100 hPa. 

• At worst, there are 2 obs per 50-hPa layer around 700 – 800 hPa. 

• Effective data sampling seems to be a function of sampling frequency and balloon 
rise rate. 

To the last point, near the ground, the balloon rises quickly and the pressure levels are close 
together, so the sampling rate in pressure terms can be rather coarse. In the upper 
troposphere and lower stratosphere, the balloon rise rate may be slower and the pressure 
levels are far apart. This gives the appearance of having higher vertical density of 
observations in these regions, however it must be kept in mind that the picture may be 
quite different in absolute height terms (indeed, the vertical sampling rate may be relatively 
constant in height coordinates). Figure A1.14 shows a plot of the effective sampling 
computed from the MET-computed SL1L2 lines. This shows the variations of sampling rate 
with height just described.  
This raise the interesting question as to how the verification results would change if high-
resolution upper air data were used. For several years, the United Nations World Climate 
Research Program ran a program called Stratosphere-Troposphere Process and their Role in 
the Climate (SPARC), which took high vertical resolution radiosonde data (HVRRD) at 
sampling rates up to 1 Hz. Such soundings were taken for approximately four sites (possibly 
more). Interestingly, there are some vertical oscillations in the computed sampling rate. 
Possibly, this is due to aliasing and/or the presence of mandatory reporting levels.  
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Figure A1.13  : A screenshot of an Excel spreadsheet showing an analysis of the SL1L2 statistics and a 

calculation of the effective sampling rate. The green shaded highlighted cells show the region with the highest 
effective vertical sampling rate (150 – 50 hPa layer), while the red shaded cells show the region with the 

lowest effective vertical sampling rate (825 – 775 hPa). 
 
 

 
Figure A1.14  : A plot of the effective vertical sampling rate, based on the analyzed data shown in Fig. A1.13. 

 
A5. Summary  
 
A comparison of the characteristics of the observations suggests that both ADPUPA and 
AIRCAR are suitable for use in this verification study, however the other observation types 
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(PROFLR, VADWND, and AIRCFT) had data that were too few and/or had too large of 
uncertainty.  
 
Some noticeable differences were noted in the verification results depending on which 
verification system was being used (MATS vs. MET). A small side study was conducted to try 
to ascertain the reasons for these differences. Results possibly point to methodological 
differences as the cause for the differences, but differences in the observational data 
cannot be ruled out. 
 
It would be interesting to obtain the high-resolution sounding data from the SPARC program 
and repeat the verification to see what effect interpolation/sampling rates have on the 
verification results.  
 
It would also be interesting to expand the scope of the effort to compare MATS and MET to 
learn whether the differences between two systems can be explained by methodological 
differences or by due to data differences. As a first step, MET could be run using the GSD 
sounding data rather than the sounding data from PREPBUFR. The MET configuration could 
also be setup to mimic the MATS approach. After repeating the verification, one would hope 
that the results will be quite similar. If noticeable differences still exist, an analysis of the 
matched pairs could then be undertaken. If there is a one-to-one correspondence of the 
matched pairs, this could point to the possibility of a bug in either system.  
 
Finally, when computing confidence bounds, the data used should be independent, 
however it is not clear at what vertical spacing observations are truly independent. Failure 
to properly account for this factor may lead to confidence bounds that are overly confident 
if higher resolution vertical sounding data are used. There may be some ideal rate of vertical 
sampling that results in the most accurate confidence bounds. Further work could be done 
to investigate what the ideal sampling rate might be for sounding data.  

 


