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Introduction 
In recent years, representation of model uncertainty within an ensemble system, both global 
and regional, has been receiving increasing attention. To address uncertainty associated with 
model formulation, a number of different strategies have been proposed. A frequently used 
approach is using a multi-physics ensemble. Use of a combination of different physics schemes 
usually leads to large diversity among ensemble members, resulting in sufficient spread and 
improved forecast skill (e.g. Hacker et al. 2011b; Berner et al. 2011, Berner et al. 2015). Even 
though ensembles designed in this way are often characterized by good performance, there are 
both practical and theoretical deficiencies associated with them. For example, for the purpose 
of statistical post-processing, securing equally distributed and independent random variables is 
a necessity. This requirement cannot be satisfied when using the multi-physics approach. The 
post-processing of a multi-physics ensemble is further complicated by the fact that each 
ensemble member has a different mean error and climatology, which is often the reason that 
these ensembles have sufficient spread (Berner et al. 2015, Eckel and Mass 2005). 
 
Despite their satisfactory performance (e.g., Berner et al. 2009, Berner et al. 2011), the main 
criticism of the SKEB and SPPT schemes has been that they are an ad hoc addition to numerical 
weather prediction, instead of being developed and implemented within the model physics. To 
account for a need to address model uncertainty at its source, the Stochastic Parameter 
Perturbation (SPP) approach was developed. It can be applied by having the parameter of 
choice unchanged throughout the integration (e.g. Murphy et al. 2004; Hacker et al. 2011a) or 
by varying randomly in time and space (e.g. Bowler et al. 2009). For long integrations, and with 
the latter approach, all ensemble members are expected to have the same climatology. 
Previous studies have shown that the SPP approach usually outperforms unperturbed 
ensembles but frequently results in insufficient spread (Hacker et al. 2011b, Reynolds et al. 
2011, Berner et al. 2015,Christensen et al. 2015). 
 
Focusing on addressing uncertainty at its source, the present study employs the SPP approach 
alone, and in combination with SKEB and SPPT. While Jankov et al. 2017 originally performed 
similar experiments with a Rapid Refresh (RAP)-based ensemble, this study focuses on 
evaluating the impact of SPP and its combination with SKEB and SPPT on high-resolution 
ensemble performance. At each grid point, perturbed parameter variations were constrained 
with spatial and temporal correlations. Perturbations were applied within a common physics 
suite, applicable for inclusion in the next-generation convection-allowing ensemble. 
 

Experiment Design 
Model 
The operational High Resolution Rapid Refresh (HRRR) configuration was used as a basis for all 
experiments. Simulations were performed over the operational HRRR Contiguous United States 
(CONUS) domain (Fig. 1) with 3-km grid spacing and eight ensemble members. The 
experimental dataset consisted of 10 spring season days starting on 18 May 2016 and ending 
on 27 May 2016. The simulations were initialized at both 0000 UTC and 1200 UTC with a 
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simulation length of 24 hours. The lateral boundary and initial conditions were provided by the 
Rapid Refresh (RAP; Benjamin et al. 2016). The model initialization included partial cycling (soil 
attributes were cycled hourly), matching the HRRR system settings running in operations at the 
National Centers for Environmental Prediction (NCEP). The HRRR system uses the Advanced 
Research version of the Weather Research and Forecasting (ARW-WRF) dynamic core 
(Skamarock et al. 2008). The physics suite used for both operational systems includes the 
Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi and Niino 2004, Nakanishi and Niino 2006) 
planetary boundary layer (PBL) parameterization and the Rapid Update Cycle (RUC; Smirnova et 
al. 2016) land surface model (LSM) parameterization. 
 
The multi-physics ensemble, which represents the control experiment (mixed_phys), used 
different physics parameterizations for the PBL and LSM schemes (Table 1). The different PB 
schemes included the Mellor-Yamada-Janjic, MYNN,Yonsei University (YSU; Hong et al. 2006), 
and Pleim-Xu (Pleim 2007) parameterizations. In terms of the LSM options, the RUC (Smirnova 
et al. 2016) and Noah (Ek et al. 2003) schemes were employed. The eight-member multi-physics 
ensemble contained a combination of the four PBL and two LSM schemes. 
 
All members of the stochastic ensemble experiments used the same physics parameterizations 
as the operational HRRR (Table 1). One of the stochastic experiments perturbed initial soil 
moisture (spp_LSM) values only, one perturbed multiple parameters within the MYNN PBL 
(spp_PBL) throughout the forecast, and the final experiment combined the previous PBL 
perturbations with SKEB and SPPT (sppPBL_skeb_sppt).  
 
The SPP approach used here was adapted from the previously mentioned work that utilized the 
RAP-based ensemble system, and a detailed explanation of the method and creation of the SPP 
perturbations is available in (Jankov et al. 2017). In summary, the spatially and temporally 
correlated pattern is fully determined by three namelist parameters: grid point standard 
deviation (gridpt stddev rand pert), length scale (lengthscale rand pert) and de-correlation time 
(timescale rand pert). Additionally, since drawing from a Gaussian distribution can result in very 
large values, the random numbers are constrained. This capping threshold is expressed in terms 
of a maximum standard deviation (stddev cutoff rand pert).  
 
While the first guess for parameter pattern values (e.g., spatial and temporal de-correlations) 
were based on suggestions from HRRR developers, the final settings were chosen after a series 
of sensitivity tests. The sensitivity experiments included the following combinations of spatial 
and temporal de-correlation lengths, which were chosen based on typical spatial and temporal 
advective scales: 150 km and 6 hours, 300 km and 12 h, and 600 km and 24-h. Experiments with 
a spatial and temporal de-correlation length of 150 km and 6 hours, respectively, resulted in the 
greatest skill. Therefore, these values were used for each of the experiments employing the SPP 
approach, as well as the experiment that included initialization soil moisture perturbations. 
 
Observations 
For evaluation of accumulated precipitation, the Multi-Radar/Multi-Sensor (MRMS) local gauge 
bias-corrected radar quantitative precipitation estimation (QPE) analyses were used. This 
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dataset integrates radar data with atmospheric environmental data, satellite data, and lightning 
and rain gauge observations to generate a suite of severe weather and QPE products at very 
high spatial (1 km) resolution (Zhang et al. 2016). Prior to performing the evaluation, the MRMS 
gridded dataset was re-gridded to the 3-km integration domain to allow for direct grid-to-grid 
comparisons. Precipitation was verified over 3- and 24-h accumulations.  For conventional 
surface and upper-air point observations, RAP observation files in Binary Universal Form for the 
Representation of meteorological data (BUFR) format were used. Verification of standard 
meteorological fields (temperature, dew point, and wind) was performed hourly for surface 
variables and at times valid at 00 and 12 UTC for upper-air variables. When compared to model 
output, bilinear interpolation was performed. 

Results 
Precipitation Verification 
All simulations were performed over the CONUS domain (Fig. 1). Verification of ”raw” model 
output (there was no post processing applied to the model output such as bias removal and/or 
calibration) was performed using Model Evaluation Tools (MET; Bullock et al. 2017) software 
over the CONUS, CONUS-East, and CONUS-West 3-km verification domains (Fig. 1) for runs 
initialized at both 0000 UTC and 1200 UTC. Trends in results for CONUS-East and CONUS-West 
for the two initializations were very similar. Given this, results discussed here will be restricted 
to the CONUS-East domain for 0000 UTC initializations only. Confidence intervals (CIs) at the 
95% level were applied to the computed statistics in order to estimate the uncertainty 
associated with sampling variability; however, observational uncertainty was not considered in 
this study. The CIs were computed using the bootstrapping technique and resampling with 
replacement was conducted 1500 times. 
 

 
Figure 1. Verification domain with the division between western and eastern regions presented with blue lines. 
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Precipitation performance was assessed using a number of verification metrics for deterministic 
and probabilistic forecast assessment, including rank histograms, frequency bias, Gilbert Skill 
Score (GSS), and reliability. 
 
Figure 2 shows rank histograms of three-hourly accumulations for 00-24-h (Fig. 2) lead time for 
each experiment. The rank histogram for all experiments generally indicates lower relative 
frequency values for the middle bins and higher values for the outermost bins. Specific features 
differ somewhat among the experiments, however. The mixed_phys experiments indicated bias 
toward heavier precipitation. Similarly, the spp_PBL and sppPBL_skeb_sppt experiments 
exhibited bias but were also characterized with presence of under-dispersion. The spp_LSM 
ensemble was characterized by similar values of relative frequencies in the outermost bins 
indicating a tendency to be under-dispersed, rather than biased. 
 

 
Figure 2. Rank histograms for all experiments for 0000 UTC initializations over the eastern part of the CONUS and for 0-24 h lead 

time. 

Frequency bias was calculated as the ratio of forecast to observed grid points exceeding a 
specified precipitation threshold. A perfect score for frequency bias is one, where values higher 
(lower) indicate that the model over-predicted (under-predicted) the exceedance of a given 
threshold. In the present study, frequency bias was analyzed for two precipitation thresholds 
(0.254 mm and 12.7 mm) as an aggregate over all members of each experiment (Fig. 3). 
Confidence intervals at the 95% level for each experiment were applied. 
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Figure 3. Frequency Bias aggregated over all members for all experiments as a function of lead time for 0000 UTC initializations 
over the eastern part of the CONUS for a precipitation accumulation threshold of a) >0.254 mm and b) >2.54 mm. 

Frequency bias for 3-h accumulated precipitation greater than 0.254 mm (Fig. 3a) showed 
statistically significant differences between several experiments (i.e., confidence intervals did 
not overlap), although not for all lead times. In general, the mixed_phys and spp_LSM 
experiments were frequently statistically significantly different from the spp_PBL and 
sppPBL_skeb_sppt experiments. The spp_LSM ensemble was the only experiment characterized 
with frequency bias values lower than one for most of the lead times while the other three 
experiments most often had frequency bias values larger than one. While the mixed_phys 
frequency bias increased with lead time, the other three experiments generally decreased with 
lead time after an initial increase at the 6-h lead time. The sppPBL_skeb_sppt and spp_PBL 
ensembles had significantly higher frequency bias values for this threshold and the first 12 
hours of the forecast compared to the other two experiments with an improved frequency bias 
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later in the period. The same type of analysis, except for 12.7 mm precipitation threshold, 
showed similar trend and values close to one (confidence intervals frequently encompassed 
one) for most of the lead times for the mixed_phys and spp_LSM experiments (Fig. 3b). The 
sppPBL_skeb_sppt and spp_PBL again had similar behavior among themselves, and often 
exhibited a significantly low bias for this threshold. 
 

 
 

Figure 4. Same as Fig. 3 except showing Gilbert Skill Score (GSS). 

In addition, for the same precipitation thresholds and for the same type of summation, Gilbert 
Skill Score (GSS) values were examined (Schaefer 1990).  Figure 4 shows GSS for the two 
precipitation thresholds and for each experiment as a function of lead time. Fig. 4a shows that 
for the 0.254 mm precipitation threshold, the GSS values decreased with lead time for all 
experiments. While the median values of GSS for all of the stochastic experiments were highest 
during the first nine hours, the spp_PBL and sppPBL_skeb_sppt decreased more rapidly with 



 9 

time and the mixed_phys increased to a comparable value of the spp_LSM experiment for the 
reminder of the forecast. Except at one forecast lead time the differences were not statistically 
significant. For the heavier precipitation threshold (Fig. 4b), the stoch_phys experiment had 
higher median GSS values early in the forecast period with a few being statistically significant. 
All experiments had similar results, with some advantage of mixed_phys and spp_LSM 
experiments for longer lead times. 
 

 
Figure 5. Reliability diagram for 0000 UTC initializations over the eastern part of the domain and for a precipitation 

accumulation threshold >0.254 mm. The horizontal dotted line represents the sample base rate, the diagonal dotted line 
represents no skill, and the solid grey diagonal line represents perfect reliability. 

Reliability diagrams were created for 1-h accumulation periods aggregated together over the 
full 24-h period, for the 0.254 mm precipitation threshold and each experiment (Fig.5). The 
observed frequency (i.e. the sample base rate) of this event is about 10% of the grid locations 
over the 10-day period, making it a somewhat uncommon event. Reliability diagrams measure 
the calibration of a probability forecast. With an infrequent event and a small ensemble, even a 
very good forecast will not conform perfectly to the diagram and any assessment should be 
tempered with these expectations. All ensembles showed a similar trend, with a generally 
higher observed proportion of events when the ensemble probability values were higher. Thus, 
all ensembles had some ability to discriminate these precipitation events from non-events. 
However, all ensembles over-estimated the probability of the precipitation events (i.e. they fall 
below the solid grey one-to-one line). Additionally, the central probability categories (37.5% 
and 62.5%) showed little difference in observed frequency for the sppPBL experiment, 
suggesting that sppPBL lacked discrimination in its central forecast probabilities. The spp_LSM 
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was characterized by somewhat higher reliability compared to other experiments for all 
forecast frequencies except the lowest one. 
 
To summarize the 3-h accumulated precipitation verification results, the rank histograms 
indicated some level of under-dispersion and bias for all ensemble experiments. While 
frequency bias results depended strongly on threshold and forecast lead time, the GSS analysis 
for both light and heavier precipitation thresholds generally showed comparable results for all 
experiments with only a few statistically significant differences noted. Though over-confident, 
the spp_LSM experiment most often had the higher reliability compared to other experiments. 
 
Finally, CONUS-wide probabilities of 24-h precipitation accumulations exceeding 25.4 mm were 
evaluated for each experiment initialized at 0000 UTC May 24, 2016 (Fig. 6a-d). Total 
precipitation accumulations for this period using MRMS measurements are also shown in Figure 
6e.  Significant areas of precipitation were generated by a convective line on the northern 
border of Kansas, which formed around 0800 UTC; however, the system dissipated during 
south-eastward propagation through Kansas. At around 1400 UTC, a well-defined convective 
line reinitiated over central and southern Missouri and continued to propagate south, south-
east, terminating in northern Arkansas and southeast Missouri at the end of the period. The 
mixed_phys (Fig. 6a) and spp_LSM (Fig. 6d) experiments appear to capture the potential for this 
observed evolution, while only one member of the sppPBL_skeb_sppt (Fig. 6b) and no members 
of spp_PBL (Fig. 6c) experiments produced precipitation >25.4 mm anywhere in Missouri. 
 
When compared to the stochastic experiments, the mixed_phys (Fig. 6a) experiment generally 
produced probabilities covering a larger areal extent. The sppPBL (Fig. 6c) and 
sppPBL_skeb_sppt (Fig. 6b) experiments produced more focused probabilities, generally limited 
to northern Kansas, and were shifted more northwestward than probabilities from the 
mixed_phys experiment. In addition, probabilities over northern Kansas were somewhat higher 
for the two experiments as compared to mixed_phys due to smaller spread. Low probabilities 
extended further toward the southeast in Kansas and into Missouri for the sppPBL_skeb_sppt 
experiment when compared to sppPBL, indicating that the combination of SKEB and SPPT 
resulted in a more diverse solution compared to sppPBL. The sppLSM solution was more similar 
to mixed_phys with areas of high probabilities over the Missouri/Arkansas border. In the case 
of sppLSM, high probability areas were more concentrated and characterized by higher values 
compared to mixed_phys as a consequence of smaller spread. On the other hand, reliability 
analysis (for all cases aggregated together) showed higher reliability in the case of spp_LSM. 
More precisely, spp_LSM was characterized with smaller spread but higher reliability indicating 
sharper and more useful forecast. 
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Figure 6. Probability of 24 h precipitation accumulation >25.4 mm threshold for the a) mixed phys, b) sppPBL skeb sppt, c) 
sppPBL, and d) sppLSM experiments, and e) total 24 h precipitation accumulation ending at 0000 UTC on 25 May 2016. 

Surface Verification 
In addition to precipitation, forecasts of surface variables including 2-m temperature, 2-m dew 
point temperature, and 10-m wind were analyzed. Once again, discussed results will be 
concentrated on the CONUS-East domain for 0000 UTC initializations only. At the current time, 
MET does not include observational error; therefore, it is not considered here. Taking 
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observational uncertainty into account for ensemble evaluation has been shown to affect 
verification of short term simulations (Bouttier et al. 2012). Inclusion of observational error 
would likely reduce the level of under-dispersion (Candille and Talagrand 2008). 
 
Aggregate root mean square error (RMSE) values of the ensemble mean and corresponding 
spread values were computed for all experiments. The spread was computed as the average 
ensemble standard deviation over the domain. The ensemble mean is simple arithmetic 
average of the members. A ratio between the spread and error (spread/error ratio) was also 
assessed. RMSE, spread, and the ratio of the two concisely summarizes ensemble performance. 
It is desirable to have comparable spread and error values (i.e., having spread encompass the 
error), producing a ratio between the two near one. 
 

 
Figure 7. 2-m temperature a) RMSE and spread and b) spread/error ratio as a function of lead time for 0000 UTC initializations 

over the eastern part of the domain. The 95% confidence intervals are included. 
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For 2-m temperature (Fig. 7a), all experiments had comparable RMSE values early in the 
forecast (evening/overnight hours). While the spp_LSM aggregate RMSE values were lower 
than the other experiments overnight, the errors increased most rapidly for the spp_LSM 
experiment during the day which led to significantly higher error when compared to spp_PBL 
and sppPBL_skeb_sppt, but not mixed_phys.   
 

 
Figure 8. Same as Fig. 7 except for 2-m dew point temperature. 

Spread values for all experiments were lower than RMSE values indicating under-dispersion. 
However, spread values varied widely between the experiments. The mixed_phys and spp_LSM 
experiments had comparable spread values for most forecast hours (exceptions included 
forecast hours 3 and 12). Overnight, sppPBL_skeb_sppt and spp_PBL had significantly lower 
spread compared to the other two experiments. During the day, the spread for 
sppPBL_skeb_sppt increased and approached the other two experiments, while spp_PBL was 
characterized with significantly lower spread for the duration of the forecast period. 



 14 

  
In terms of spread/error ratio (Fig. 7b), variability between the experiments was evident during 
the overnight hours with mixed_phys and spp_LSM having significantly higher spread/error 
values (closer to one) compared to the other two experiments. However, during the day, all 
experiments were characterized by similar ratio values with exception to the spp_PBL 
experiment, which had significantly lower ratio values. Due to relatively similar RMSE values for 
each experiment, the spread/skill ratio was largely regulated by the spread of each experiment; 
this leads to the ratio having very similar characteristics to the ensemble spread results show in 
(Fig. 7a). 
 

 
Figure 9. Same as Fig. 7 except for 10-m wind speed. 

RMSE, spread, and spread/error analysis as a function of lead time for 2-m dew point 
temperature is presented in Figure 8. During the overnight hours, mixed_physics had 
significantly higher RMSE values when compared to the other experiments. During the day, as 
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was the case for 2-m temperature, spp_LSM was characterized by a rapid increase and 
significantly higher error compared to other experiments (Fig. 8a). In terms of spread, the 
mixed_phys ensemble had comparable spread to spp_LSM overnight, while during the day the 
spp_LSM spread was significantly larger than any other experiment. In the case of 
sppPBL_skeb_sppt, spread increased with lead time but was still significantly lower compared 
to spp_LSM and mixed_phys. The spp_PBL experiment was once again characterized by 
significantly lower spread for the duration of the forecast. For spp_LSM, the high RMSE values 
were accompanied by significantly higher spread that resulted in a spread/error ratio closer to 
one for this experiment compared to others (Fig. 8b). The low spread for both 
sppPBL_skeb_sppt and spp_PBL resulted in a low spread/error ratio (Fig. 8b). 
 
 
For the 10-m wind, RMSE, spread, and the spread/skill ratio are presented in Figure 9. All 
experiments had similar RMSE values for all forecast lead times. While all experiments also had 
generally low spread, the spread values differed notably among the experiments (Fig. 9a). 
Mixed_physics and sppPBL_skeb_sppt had comparable spread that was significantly larger 
compared to the other two experiments for most lead times, with spp_LSM having increasing 
spread toward the end of the period. With comparable RMSE values between the experiments, 
spread/error ratio trends were again dominated by the differences in spread between the 
experiments (Fig. 9b); for all forecast lead times, all experiments had spread/error ratios below 
one. 
 
Generally, for 2-m temperature (Fig. 7) and 2-m dew point temperature (Fig. 8), both spp_PBL 
and sppPBL_skeb_sppt were characterized by small spread; though an increase in spread was 
noted with lead time for sppPBL_skeb_sppt, which can be attributed to the addition of SKEB 
and SPPT. This result implies that the PBL perturbations did not have much impact on either 2-
m temperature or 2-m dew point temperature and also indicates the limited impact of SKEB 
and SPPT on surface variables. Overall, this suggests solely perturbing physics scheme 
parameters is currently not enough to achieve sufficient spread (Jankov et al. 2017, Hacker et 
al. 2011b, Reynolds et al. 2011, Berner et al. 2015). 
 
Further, reliability diagrams for surface variables aggregated over the full 24-h forecast period 
were evaluated for select thresholds (Fig. 10). Figure 10a shows reliability of 2-m temperature 
at a threshold greater than 293 K. The sample base rate for this threshold was 50%. It can be 
seen that the most reliable ensemble varied with forecast frequency with the stochastic 
experiments having better reliability for certain frequencies, compared to the mixed_physics 
ensemble, which was generally over-confident. 
 
Reliability for 2-m dew point temperature was evaluated for the greater than 283 K threshold 
(Fig. 10b). The sample rate for this threshold was about 70%. All, experiments performed 
similarly for lower forecast frequencies, with relatively good reliability transitioning to 
becoming under-confident. For higher forecast frequencies, the spp_LSM and mixed_physics 
ensembles remained under-confident while the sppPBL_skeb_sppt and spp_PBL ensembles 
were again more reliable. 
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Figure 10. Reliability diagrams for 0000 UTC initializations over the eastern part of the domain for 2-m temperature for a 

threshold of a) >293 K, 2-m dew point temperature for a threshold of b) >283 K and 10-m wind for a threshold of c) >2 m/s. The 
horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, and the solid grey diagonal line 

represents perfect reliability. 
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Figure 11. BS for 0000 UTC initializations over the eastern part of the domain 2-m temperature for a threshold of a) >293 K, 2-m 

dew point temperature for a threshold of b) >283 K and 10-m wind for a threshold of c) >2 m/s. 

For 10-m wind speed, ensemble reliability was evaluated for wind speeds greater than 6 ms-1. 
(Fig. 10c). For this variable and threshold, the sample rate was somewhat lower than 10%. For 
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all forecast frequencies, all experiments were over-confident. However, the spp_PBL and the 
sppPBL_skeb_sppt experiments were characterized by better reliability compared to the other 
two experiments for all forecast frequencies. This was also the case for a number of other 
evaluated thresholds (not shown), implying that SPP perturbations in the PBL scheme led to 
improved reliability and sharpness of 10-m wind forecasts. 
 
Next, the Brier Score (BS) was computed (Brier 1950). BS was calculated for surface variables 
using the same thresholds as the reliability diagrams. BS values as a function of lead time for 2-
m temperature greater than 293 K threshold are presented in Fig. 11a. For this threshold, all 
experiments generally showed a similar trend with lower values overnight and an increase in BS 
during the early part of the day. Also, for lead times prior to 15 h, the mixed_phys experiment 
was characterized by slightly higher BS values compared to others. For a 2-m dew point 
temperature threshold of 283 K (Fig. 11b), similar behavior was again observed, with the 
exception spp_LSM which yielded higher BS values during the day. Similarly, for 10-meter wind 
speed greater than the 6 m/s threshold (Fig. 11c) the lowest BS values were detected 
399 during the night followed by a sharp increase in BS during the early part of the day and a 
slight decrease in the afternoon hours. Interestingly, for all near-surface variables evaluated, BS 
values during the day were generally lower for the spp_PBL and the sppPBL_skeb_sppt 
experiments. This may imply positive impact on skill of surface variables when SPP approach 
was used. 
 
Upper-Air Verification 
A similar analysis to that performed for surface variables was also performed for select upper- 
air variables and levels, including 850-hPa temperature, 500-hPa geopotential height and 250-
hPa wind (Figure 12). For 850-hPa temperature, all stochastic experiments had significantly 
lower RMSE at initialization time compared to the mixed_phys (Fig. 12a). The RMSE values 
generally increased with forecast lead time, with spp_LSM having the largest RMSE values by 
the end of the period (Fig. 12a). The spp_LSM experiment had significantly larger spread at 
initialization time, implying an impact of initial condition perturbations associated with the 
cycling of soil moisture and temperature. The sppPBL_skeb_sppt experiment had the largest 
spread at the 1200 UTC valid time. Overall, the spp_PBL experiment had the lowest spread, 
which was significant by the 24- forecast. This result is also clearly indicated in the spread/error 
ratio (Fig. 12b), with significantly lower values associated with the spp_PBL experiment. 
 
While there are no statistically significant differences in RMSE values for 500-hpa geopotential 
height, spread varies significantly between each of the experiments (Fig. 12c). The 
sppPBL_skeb_sppt experiment had significantly larger spread, followed by mixed_phys, 
spp_LSM, and finally spp_PBL. This result is again highlighted in the spread/error ratio plot (Fig. 
12d). 
 
While mixed_phys had significantly larger error at the initial time for 250-hPa wind, differences 
in RMSE between all of the experiments were not significant at 12- and 24-h lead times (Fig. 
12e). Similar spread for sppPBL_skeb_sppt and mixed_physics was noted, which was 
significantly larger when compared to the other two experiments. While the mixed_phys 
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spread/error ratio was higher (significantly for 24-h lead time) than the spp_LSM and spp_PBL 
experiments, it was not significantly different from the sppPBL_skeb_sppt (Fig. 12f). 
 
In general, the upper-air analysis indicates that the use of SKEB and SPPT improves model 
performance (e.g. spread and reliability) for upper-air variables. This finding was also valid for 
the RAP-based ensemble (Jankov et al. 2017). 
 

 
 

Figure 12. RMSE, spread and spread/error for a) 850-hPa temperature, b) 500-hPa geopotential height and c) 250-hPa wind and 
spread/error ratio for d) 850-hPa temperature, e) 500-hPa geopotential height and f) 250-hPa wind for 0000 UTC initialization 

and eastern part of the domain. The 95% confidence intervals are included 
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Summary 
A new stochastic parameter perturbation (SPP) scheme was developed and tested, and 
ensemble performance using only SPP and in combination with other stochastic methods (SKEB 
and SPPT) was analyzed. All stochastic methods were assessed against a multi-physics baseline 
ensemble. 
 
The SPP scheme introduces temporally and spatially varying perturbations to key parameters in 
the MYNN PBL physics parameterization, as well as to the soil moisture field within the RUC 
LSM scheme at initialization time. The detailed characteristics of these perturbations (e.g., 
spatial and temporal de-correlation lengths) were determined through collaboration with 
physics parameterization experts and by conducting a variety of sensitivity tests. For the HRRR 
domain, a de-correlation time and length of 6 hours and 150 km, respectively, were found to be 
appropriate for convective scales. 
 
An eight-member HRRR ensemble consisting of 24-h forecasts was evaluated using a variety of 
metrics over the 18-27 May 2016 period. All model runs used RAP forecasts as initial conditions 
for a one-hour pre-forecast that included the latest observations. SKEB and SPPT were 
employed with the suggested configuration for the horizontal grid spacing used in this study. 
 
Significant findings are summarized below: 
 
Applying perturbations to initialized soil moisture resulted in a generally positive impact on 
precipitation forecasts. However, these perturbations created an increase in 2-m dew point 
temperature RMSE and BS. This approach should be investigated in more detail in order to 
effectively tune the magnitude and spatial scales of the perturbations to improve performance. 
Adding SKEB and SPPT in combination with SPP had a positive impact on 10-m wind. It also 
increased spread for all examined upper-level variables. 
 
Our results generally confirm the findings of previous studies performed on coarser grid 
spacings (e.g., (Jankov et al. 2017), Berner et al. (2011), Hacker et al. (2011a), and Hacker et al. 
(2011b)), including: (1) parameter perturbations alone within a single physics scheme do not 
generate sufficient spread to remedy under-dispersion for short-term ensemble forecasts, and 
(2) a combination of several stochastic schemes outperforms any single scheme. 
 
Regarding the first finding, it was expected that perturbations within a single scheme (in this 
case, PBL) would not lead to sufficient spread. Also, the general impact was limited to near 
surface variables. However, parameter perturbations led to an improvement in 10-m wind 
speed reliability and sharpness (not shown), representing a successful implementation of PBL 
perturbations designed specifically to improve 10-m wind speed metrics. Also, BS values for 
selected thresholds and near-surface variables were lower during the day for experiments that 
included PBL perturbations. Therefore, an improvement in performance for targeted variables 
can be made when using SPP.  
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Our research shows that a combination of several stochastic approaches outperformed any one 
single stochastic method. While this may suggest that a synthesis of different approaches may 
be best suited to capture model error in its full complexity, it is hypothesized that SPP 
perturbations applied to one or more parameters in a variety of schemes will lead to sufficient 
spread. In the future, SPP will be added to the Thompson microphysics scheme, additional 
parameters in the PBL and LSM schemes, and the corresponding radiation scheme in order to 
test this hypothesis. 
 
Pending promising results, the use of SPP within many different parameter perturbation 
schemes may provide a valuable option for sufficient spread within an operational, convective-
allowing, single-physics ensemble system. 
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