
 

Addressing model uncertainty through 
stochastic parameter perturbations 
within the HRRR ensemble 
Developmental Testbed Center (DTC) Annual Operating Plan (AOP) 
2017 Final Report 

Regional Ensemble Team: Jamie Wolff1, Jeff Beck2, Greg Thompson1, Isidora Jankov2, 
Michelle Harrold1, Mike Kavulich Jr.1, Tressa Fowler1, and Lindsay Blank1 

 

1National Center for Atmospheric Research (NCAR) and Developmental Testbed Center (DTC) 
2Cooperative Institute for Research in the Atmosphere (CIRA)/Affiliated with NOAA/ESRL/GSD 
and Developmental Testbed Center (DTC)  
 
  



1 

Table of contents 
Introduction 2 

Experiment design 2 
Model 2 

SPP applied to graupel treatment 3 
SPP applied to cloud water distribution 4 
SPP applied to CCN activation 5 
SPP experiments 5 

Observations 6 

Model verification approaches 6 
Deterministic verification metrics 6 
Ensemble verification metrics 7 

Verification results 7 
Surface verification 7 

Traditional 7 
Ensemble 9 

Upper-air verification 13 
Traditional 13 
Ensemble 15 

Precipitation and composite reflectivity verification 17 
Traditional 17 

3-h Accumulated Precipitation 17 
Composite Reflectivity 21 

Ensemble 23 
3-h Accumulated Precipitation 23 

Comparison of Ensemble Members to Control Member 25 

Summary 28 

References 31 
 
 
  



2 

Introduction 
In most existing regional ensemble systems, model-related forecast uncertainty is addressed by 
using multiple dynamic cores, multiple physics suites, or a combination thereof. While such 
multi-model ensembles have demonstrated potential, their maintenance is resource-intensive. 
More importantly, probabilistic forecasts from multi-model ensembles do not have consistent 
distributions since each member can have a different mean error and variance. Post-processing 
generally assumes independent and identically distributed random variables, a requirement that 
is not met by multi-model ensemble systems. To facilitate a sustainable and unified operational 
forecasting system, we propose to extensively test an alternative option for creating desirable 
spread and reliability by perturbing the members stochastically within a storm-scale ensemble. 
The stochastic-dynamic approach results in statistically consistent ensemble distributions. Two 
widely used stochastic schemes are the Stochastic-Kinetic Energy Backscatter (SKEB; Shutts 
2005, Berner et al. 2009) and the Stochastic Perturbations of Physics Tendencies (SPPT; 
Buizza et al. 1999, Palmer et al. 2009). These methods are formulated to represent the effect of 
unresolved subgrid-scale variability and are added a posteriori to independently tuned models.  
An additional approach is the Stochastic Parameter Perturbation (SPP) scheme, which targets 
parameter uncertainty in the physical parameterization schemes directly. 

Experiment design 

Model 
In 2016, the DTC Regional Ensemble Task successfully built the necessary infrastructure for 
execution of a High Resolution Rapid Refresh (HRRR) ensemble for prolonged retrospective 
runs [the HRRR represents a specific configuration of the Weather Research and Forecasting 
(WRF; Skamarock et al. 2008) model using a highly tuned set of physical parameterizations]. 
The developed framework also took advantage of an option in WRF to generate random 
perturbations that can be applied to a variety of parameters in physics schemes.  
 
Based on promising results from 2016, where the SPP option was implemented in both the 
HRRR Planetary Boundary Layer (PBL) and Land Surface Model (LSM) schemes (results 
described in Jankov et al. 2017), the DTC Regional Ensemble Task proposed continued testing 
of stochastic physics in 2017. Research for this performance period focused on implementing 
SPP within the Thompson microphysics scheme (Thompson and Eidhammer 2014). In 
particular, the SPP method was employed to to treat known parameter uncertainties for three 
aspects within the scheme: (a) the relationship used to specify the Y-intercept parameter of the 
assumed inverse exponential size distribution for graupel, (b) the shape factor of the 
generalized gamma size distribution of cloud water droplets, and (c) cloud condensation nuclei 
activation via consideration of sub-grid scale eddies with higher supersaturation. 
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SPP applied to graupel treatment 
The first stochastic parameter perturbation applied relates to parameters that fundamentally 
control the size spectra of the graupel/hail hybrid category. The assumed number density 
function for this category follows a generalized gamma distribution of the following form: 

 
N(D) = N0  Dμ  e-λD,  (Eq. 1) 

 
where D is the droplet diameter, N0 is the intercept parameter, μ is the shape parameter, and λ 
is the slope. 
 
The Thompson bulk microphysics parameterization was specifically designed to predict only 
one free variable of a mixed or hybrid graupel/hail category, its mass mixing ratio, in order to 
reduce computational cost as compared to fully double-moment schemes. One-moment 
schemes typically assume an inverse-exponential size distribution (μ = 0 in Eq. 1) with an a 
priori assigned and constant Y-intercept parameter. Numerous observations from aircraft and 
surface measuring campaigns (e.g., McFarquhar and Black, 2004; Knight et al, 1982) generally 
support this distribution shape, although the intercept parameter has been known for decades to 
vary by as many as 2-3 orders of magnitude. 
 
Since using a fixed intercept parameter was known to be a problem when G. Thompson 
developed the scheme, he used a relationship combining graupel mass mixing ratio and amount 
of supercooled liquid water to compute a space/time-varying Y intercept parameter 
diagnostically during a simulation. From prior observational studies, the intercept parameter is 
permitted to vary from 104 to 106 m-4 consistent with overall observations, but the diagnostic 
relationship itself was ad hoc and not well tested. The McFarquhar and Black (2004) 
observations contradict the scheme’s existing diagnostic relation for decreasing intercept 
parameter as a function of higher graupel mixing ratio (Fig. 1); although their observations were 
collected in tropical storms so their applicability to mid-latitude deep convection is unknown. 
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Figure 1. The current graupel/hail Y-intercept relationship is shown as the colored parabolic surface as 

a function of both graupel mixing ratio and supercooled water content.  Note that as graupel mixing 
ratio increases, the intercept parameter decreases.  The SPP technique will result in a “cloud” of points 

represented by the semi-transparent gray cylinder. 

 
Therefore, the SPP technique together with a pre-determined probability density function (PDF) 
that aligns well with the variability found in observations to choose a variable Y-intercept 
parameter was employed. Rather than choosing an entirely randomly generated number that is 
directly scaled to become a value of intercept parameter, an ellipsoid of values that produce the 
highest probability of occurrence to match the McFarquhar and Black (2004) observations was 
created. 

SPP applied to cloud water distribution 
The SPP technique was also applied to the value of the shape parameter (μ) of the generalized 
gamma distribution of the cloud water variable to vary between 2 and 15. In the case of the 
standard code without the use of SPP, the value of μ is determined diagnostically from the cloud 
droplet number concentration, which was chosen to follow observations by Martin et al (1994). 
Their data also showed considerable spread, so we choose to permit a variety of possible 
outcomes of the diagnosed value of μ using SPP while centering the perturbation near zero but 
permitting deviations of 6 integer values. In other words, if the diagnosed μ resulted in 8, then it 
was perturbed to vary as far as 2 and 14, but the nature of the Gaussian perturbations would 
rarely result in values reaching those extremes. Using μ to alter the size distribution assumption 
greatly alters the mean diameter of the particles (Fig. 2), which will have an immediate impact 
on the initial formation of rain from the scheme’s autoconverson. Other potential side effects of 
changing cloud droplet sizes include snow riming (collection of cloud water by falling snow), rate 
of ice nucleation (which is a function of drop size), and the potential for lofting the smaller cloud 
droplets higher in the vertical within convective updrafts. As such, the total changes to the entire 
system are highly non-linear and include initial rain formation, cloud growth, ice formation, etc. 
and, therefore, have the potential for greatly impacting evaporative cooling and resulting 
convective cold pools (Morrison et al., 2012). By altering cold pool strength and propagation 
speed, there will be impacts to convective forecasts, especially after convective initiation. 
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Figure 2.  Number distribution of particles as a function of diameter (Eq. 1) using a generalized gamma 

function with shape parameter μ = 2 (left curve) and μ = 12 (right curve). 

 

SPP applied to CCN activation 
The final application of SPP was designed to affect the activation of water-friendly aerosols as 
cloud condensation nuclei (CCN). In general, the Thompson and Eidhammer (2014) aerosol-
aware microphysics parameterization is likely to produce too few CCN because it utilizes only 
the WRF model grid-scale vertical velocity, w. Since even convection-allowing models at 
approximately 3-km grid spacing do not fully predict all scales of vertical motions in the 
atmosphere, we decided to account for some of this uncertainty by perturbing w only for the 
purpose of determining what number of CCN activate from a look-up table. In order to avoid a 
lack of CCN activation, we only applied positive perturbations to w since negative perturbations 
could inhibit proper CCN activation entirely. Also, due to comparisons of cloud water drop 
number and size in a climatological sense by Thompson et al. (2017), we determined that 
boosting the CCN activation might generally lead to a better match to observations in general. 

SPP experiments 
For all experiments, the latest version of the WRF-based HRRR system was used.  The 
Contiguous U.S. (CONUS) domain contained 1536 x 1024 grid points and 50 vertical levels with 
a model top of 20 hPa.  The numerics of WRF are well documented in other publications and, 
thus, not described herein. 
 
The forecasts were conducted as cold starts, producing 36-hour forecasts in hourly increments. 
Tests were initialized every-other-day during the 2017 warm season from 2 May - 31 July 2017 
at 00 UTC. Also, since the microphysics scheme is used year-round and needs to perform 
equally well in the cool season, cases initialized daily at 00 UTC from 1-31 December 2016 
were also run to ensure the proposed ensemble system does not deteriorate forecasts in the 
cool season when deep convection is essentially absent from the CONUS.  
 
In order to assess whether including SPP within microphysics improves the ensemble forecast 
spread, an eight-member ensemble was run. The first member of the subset was identical to the 
deterministic HRRR setup with no stochastic technique applied (considered the “control” 
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member), while the remaining seven members each employed SPP within the Thompson 
microphysics scheme for the three aspects of interest described above.  
 
A second test for future comparison is also being run that utilizes the SPP technique within the 
PBL parameterization scheme (for parameters including turbulent mixing length, sub-grid cloud 
fraction, thermal and moisture roughness lengths, and Prandtl number) in addition to the 
microphysics scheme perturbations to assess the cumulative impact on ensemble forecast 
spread. 

Observations 
RAP observation files in BUFR format, which include conventional surface and upper-air data, 
were used for verification of point-based fields, including temperature, dew point temperature, 
and wind speed. Bilinear interpolation was applied to match the point observations with the 
gridded model output. The Multi-Radar/Multi-Sensor (MRMS) dataset was used as the 
observational analysis product for the precipitation accumulation and composite reflectivity 
gridded comparisons. The MRMS data was regridded to the model integration domain to allow 
for grid-to-grid comparisons. Budget interpolation was used for the quantitative precipitation 
estimate (QPE) field, while the nearest neighbor approach was used for the composite 
reflectivity. 

Model verification approaches 
A variety of methods can be used to conduct an evaluation of both deterministic and 
probabilistic forecasts. To support this analysis, the DTC developed and supported Model 
Evaluation Tools (MET) verification software system was used. Metrics applied for this study 
included traditional methods commonly used in the community for both deterministic and 
probabilistic forecast performance assessment. More information on all of the metrics used for 
this work can be found in the MET Users’ Guide (2017) and Wilks (2011). 

Deterministic verification metrics 
Standard verification statistics were computed for surface (including precipitation) and upper-air 
variables over the 3-km HRRR domain and were aggregated over the CONUS, CONUS-East, 
and CONUS-West verification domains. Focus for this report will mainly be placed on the 
CONUS-East domain and the summer season runs for brevity. Metrics calculated for both 
surface and upper-air temperature, dew point temperature, and wind speed consisted of mean 
error, or the measure of overall bias for continuous variables, and (bias corrected) root-mean-
square error ((BC)RMSE). For upper-air results, verification statistics were computed for times 
valid at 00 and 12 UTC for the mandatory levels and surface verification results were computed 
for the full 36-h forecast length in 1-h increments. When evaluating precipitation and composite 
reflectivity, two key statistics were used in this study. The first was Gilbert Skill Score (GSS), 
which is the fraction of observed events that were correctly predicted (or hits over the total 
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forecast and observed area) and adjusted for random hits. The second was frequency bias, 
which is the ratio of the frequency of forecast events to observed events (or total forecast area 
divided by the total observed area). Due to conducting the experiment with cold starts, for 
precipitation and composite reflectivity analysis, the first 6 hours of the forecast are discarded. 

Ensemble verification metrics 
In the course of this evaluation, several ensemble verification metrics were also applied to 
assess the ensemble performance. These included: (a) spread, the standard deviation of the 
individual member forecasts compared to the ensemble mean, (b) Brier score, a measure of the 
mean squared probability error, (c) reliability diagram, showing observed frequency of events 
versus the forecast probability of those events, (d) Relative Operating Characteristic (ROC) 
curve, a measure of resolution given by the ability of the forecast to discriminate between two 
alternative outcomes, and (e) rank histogram, to compare the rank of the observations to all 
members of the ensemble forecast. A subset of these results will be described in detail for this 
report. 

Verification results 

Surface verification 

Traditional 
Figure 3 displays the summary median bias for surface temperature, dew point temperature, 
and wind speed across the summer forecast period (May 2 - July 31 2017). Overall, there are 
relatively small bias values and minimal ensemble spread at all forecast hours for all three 
surface variables. In all cases, the bias is positive - typically less than 0.6 °C for temperature, 
1.2 °C for dew point temperature, and 1 ms-1 for wind speed. Ensemble spread is negligible in 
the first 12 forecast hours; however, ensemble spread increases in the latter half of the forecast, 
with the largest spread (though still relatively small) occurring over the longer forecast lead 
times (e.g. forecast hours 30 and greater). Ensemble spread increasing with forecast length is 
expected as the effects of the stochastic perturbations on the environment are more apparent 
with time.  
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a)                                                                         b) 

          
 

c) 

 
Figure 3. Bias by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature, and c) 10-m 

wind speed for 0000 UTC initializations over the summer cases aggregated across the CONUS-East 
verification domain. 

 
Figure 4 illustrates the summary median RMSE for the three surface variables. Overall, the 
behavior of this metric is similar to bias: minimal ensemble spread that increases with forecast 
lead time. Additionally, the values of RMSE are also small, on the order of 1 - 2 degrees/ms-1. 
Unlike temperature and dew point temperature, the individual ensemble members for 10-m wind 
speed are clustered together with higher error than the ensemble mean (Fig 4c). The BCRMSE 
for the surface parameters exhibits the same trends as in the RMSE (not shown).    
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a)                                                                              b) 

 
c) 

 
Figure 4. RMSE by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature, and c) 
10-m wind speed for 0000 UTC initializations over the summer cases aggregated across the CONUS-
East verification domain. 

Ensemble 
Surface verification revealed very little spread compared to the measured RMSE during the 
three month summer period for the variables analyzed over the CONUS-East domain. 
Spread/skill plots for 2-m temperature (Fig. 5a), dew point temperature (Fig. 5b), and 10-m wind 
speed (Fig. 5c) indicate that, while spread increases slowly with forecast lead time, the 
ensemble lacks sufficient spread to account for the amount of error. Ideally, the spread/skill ratio 
would be equal to one; it is significantly lower than one in all cases due to the insufficient 
spread. This result was somewhat expected, given that the sole source of ensemble spread is 
coming from the microphysics perturbations and, therefore, only has an indirect impact on the 
these particular surface variables. 
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a) 

 

b) 

 

c) 

 
Figure 5. Spread/skill plots by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature, 

and c) 10-m wind speed for 0000 UTC initializations over the summer cases aggregated across the 
CONUS-East verification domain. Skill (RMSE) is designated by the blue line, spread by the red line, 

and spread/skill ratio by the green line. 

 
Rank histograms for the same surface variables over the CONUS-East domain are shown in 
Figure 6, averaged over the first 24 hours of the forecast.  The under-dispersiveness seen from 
the spread/skill plots is also seen in the rank histograms, denoted by the U-shaped plot for 2-m 
temperature (Fig. 6a), 2-m dew point temperature (Fig. 6b), and 10-m wind speed (Fig. 6c).  
There is also a slight hint of a high bias for each surface variable, as more observations fall in 
the first bin, rather than the last. 
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a) 

 

b) 

 

c) 

 
Figure 6. Rank histogram plots for a) 2-m temperature, b) 2-m dew point temperature, and c) 10-m 

wind speed averaged over the first 24 hours of the forecast. 

 
Reliability is a measure of conditional frequency bias. Within each probability category for the 
forecast, we examine the frequency of occurrence of the observed events. When assessing 
ensembles using reliability diagrams, the forecast probabilities are binned and assessed against 
the observed frequency. Thus, perfect reliability would be when the forecast and observed 
frequencies in each category are equal and lie along the 1-to-1 line. In addition, the “no 
resolution” line (or sample base rate) is plotted as the horizontal dashed line and corresponds to 
a uniform forecast of the climatological frequency of the event. The “no skill” line is indicated by 
the diagonal dashed line that lies halfway between the climatology and perfect reliability lines. 
Given these parameters, the area where the probabilistic forecast is skillful is indicated by the 
green shading in Figure 7. To illustrate the performance for 2-m temperature, 2-m dew point 
temperature and 10-m wind speed, thresholds that yielded a sample climatology of 
approximately 60% were chosen leading to a temperature threshold of ≥293 K, dew point 
temperature threshold of ≥288 K, and wind speed threshold of ≥2 ms-1. In all cases the reliability 
curve has a positive slope, indicating that, to at least a certain degree, as the forecast 
probability increase, so too does the observed frequency; however, the slope is less than the 
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diagonal. In general, for the lower forecast probabilities the ensemble tends to under-forecast 
the event probability transitioning to over-forecasting the event probability. This is a common 
feature of under-dispersive ensembles. When assessing thresholds with lower sample base 
rates (e.g., higher temperature, dew point temperature, and wind speed values; not shown), the 
forecasts tend to over-forecast observed event frequencies, with a lack of skill evident at the 
higher probabilities. 
 

a) 

 

b) 

 

c) 

 
Figure 7. Reliability diagrams for 0000 UTC initializations over the summer cases aggregated across 
the CONUS-East verification domain for a) surface temperature at a threshold of ≥293 K, b) surface 
dew point temperature at a threshold of ≥288 K, and c) surface wind speed at a threshold of ≥2 ms-1. 

The horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, the solid 
grey diagonal line represents perfect reliability, and the green shaded areas indicate skillful forecasts. 
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Upper-air verification 

Traditional 
Figure 8 illustrates the vertical profile of mean error at the 24 hour forecast lead time. As 
exhibited by their surface counterparts, the biases for temperature and wind speed are relatively 
small (less than 1 degree/ms-1). On the other hand, dew point temperature exhibits positive 
biases increasing with height to 3 °C at 500 hPa. Ensemble spread is relatively small near the 
surface between 925 - 850 hPa and relatively larger in the mid- to upper-levels. Temperature 
and wind speed have a general cool/slow bias that increases with height while the opposite is 
true for dew point temperature.  
 

a)                                                                           b) 

 
c) 

 
Figure 8. Vertical profile of bias at forecast hour 24 for a) temperature, b) dew point temperature, and 
c) wind speed for the 0000 UTC initializations over the summer cases aggregated across the CONUS-

East verification domain. 
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Figure 9 displays the RMSE as a function of pressure level for each variable at the 24 hour 
forecast lead time. Temperature and dew point temperature exhibit very minimal ensemble 
spread from 925 - 850 hPa and up to 700 hPa for dew point (Fig. 9b). Wind speed exhibited the 
most spread among ensemble members, especially in the lower- to mid-levels (Fig. 9c). Vertical 
profiles of BCRMSE display very similar trends to RMSE for the three variables discussed (not 
shown). The value of RMSE increase with forecast lead time for all variables. The ensemble 
spread does not always increase, however, unlike the surface counterparts. The RMSE for 
temperature and dew point temperature reach peak values at forecast hour 24 (Fig. 9a-b). 
RMSE for wind speed reaches its maximum value at forecast hour 36 (not shown). 
 

a)                                                                                b) 

 
c)  

 
Figure 9. Vertical profile of RMSE at forecast hour 24 for a) temperature, b) dew point temperature, 
and c) wind speed for the 0000 UTC initializations over the summer cases aggregated across the 

CONUS-East verification domain.  
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Ensemble 
Upper-air spread/skill plots for 500 hPa temperature, dew point temperature, and wind speed 
are shown in Figure 10. Insufficient spread aloft results in very low spread/skill ratios for these 
variables, although spread does increase with forecast lead time. Overall, it is clear that the 
microphysics parameter perturbations alone are not sufficient to produce the necessary spread 
in upper-air variables, following along the lines of spread/skill plots for surface variables (Fig. 5). 
 

a) 

 

b)

 

                                               c) 

 
Figure 10. Upper-air (500 hPa) spread/skill plots by forecast lead time for a) temperature, b) dew point 
temperature, and c) wind speed for 0000 UTC initializations over the summer cases aggregated across 

the CONUS-East verification domain. Skill (RMSE) is designated by the blue line, spread by the red 
line, and spread/skill ratio by the green line.  

 
Given the lack of spread aloft, the rank histograms for 500 hPa temperature (Fig. 11a), dew 
point temperature (Fig. 11b), and wind speed (Fig. 11c) also illustrate the under-dispersive 
nature of the ensemble for these variables. The same U-shape as was seen for the surface 
variable rank histograms (Fig. 6) is noted in these plots. There is again some indication of bias 
for these variables, with 500-hPa temperature (Fig. 11a) and wind speed (Fig. 11c) values 
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showing a tendency to be too low with more observations falling in the last bin than in the first. 
The rank histogram for 500-hPa dew point temperature (Fig. 11b) values indicate an opposite 
trend, with more observations falling in the lowest bin indicating the forecast values are too high.   
 

a)   

 

b)  

 

                                                    c) 

 
Figure 11. Rank histogram plots for 500 hPa a) temperature, b) dew point temperature, and c) and 

wind speed averaged over the first 24 hours of the forecast. 

 
Reliability diagrams for upper-air temperature, dew point temperature, and wind speed at a 
variety of thresholds and pressure levels were examined. In most cases the vast majority of 
data were in the 0 and 0.9 bins (lowest and highest, respectively), both of which had very 
reliable forecasts; however, there were an insufficient number of cases in the middle bins, so 
they are excluded from this analysis.  
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Precipitation and composite reflectivity verification 

Traditional  

3-h Accumulated Precipitation 
Figure 12a-e shows GSS for 3-h accumulated precipitation at 5 thresholds (≥0.254 mm,  ≥2.54 
mm, ≥6.35 mm, ≥12.7 mm, and ≥25.4 mm) aggregated over the summer cases. When 
interpreting precipitation verification, it is necessary to consider the base rate (i.e., ratio of total 
observed grid-box events to the total number of grid boxes summed over all cases; black line on 
y-2 axis in Fig. 12) to better understand the underlying sample and how it affects the statistical 
results. The base rate is highest at the lowest thresholds and from 21 – 00 UTC and decreases 
to near zero at the higher thresholds. Overall, skill for the individual ensemble members and the 
ensemble mean is generally highest at the smallest thresholds and at the earlier forecast lead 
times, with a gentle decrease in skill by the end of the forecast integration period. For all 
thresholds except ≥25.4 mm, a bimodal diurnal signal is observed with peak values at 06 – 09 
UTC, when the base rate is lowest, along with a smaller secondary peak at 21 UTC. All 
members are generally clustered together showing minimal spread; however, a slight increase 
in spread is observed as forecast lead time increases and as precipitation threshold increases. 
The growth in spread with forecast lead time is likely attributed to the cumulative effects from 
the stochastic perturbations throughout the model integration (e.g., convection during day 1 may 
have effects on boundary locations up during day 2). In general, the aggregate ensemble mean 
has more skill than the envelope of individual members, but the gain in skill from the ensemble 
mean decreases as threshold increases. The increase in skill from the pure arithmetic ensemble 
mean is likely due to the individual forecasts being averaged together resulting in a smoother 
forecast with more spatial coverage; these types of coarse fields generally verify better than 
high-resolution fields when using traditional verification metrics. While not shown, results for the 
aggregation of winter cases share similar outcomes as the summer season. Generally, there is 
small spread among the members, which increases as forecast lead time and threshold 
increases. One noted difference in the winter season is at the lower thresholds, where the 
ensemble mean is closer to the  individual members than in the summer cases. This may be 
attributed to synoptic-scale features more often seen in winter precipitation, which are typically 
smoother and larger in spatial coverage than more discrete mesoscale features commonly seen 
in the summer. 
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a) 

 

b) 

 

c)

 

d)

 

e) 

 
Figure 12. Gilbert Skill Score by forecast time time for 3-h accumulated precipitation for 0000 UTC 
initializations over the summer cases aggregated across the CONUS-East verification domain for a) 

≥0.254 mm, b) ≥2.54 mm, c) ≥6.35 mm, d) ≥12.7 mm, and e) ≥25.4 mm. The black line on the y-2 axis 
is the base rate. 
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When evaluating 3-h accumulated precipitation frequency bias over the summer cases, 
forecasts generally perform well with most thresholds having bias values close to 1 (i.e., 
unbiased; Fig. 13a-e). For the individual members, there is a small under-forecast at the early-
to-middle forecast lead times for the lower thresholds; this transitions to an over-forecast at the 
highest thresholds. A slight diurnal signal is also noted for the ≥0.254 to ≥12.7 mm thresholds, 
with the smallest bias values around forecast hours 18 – 21 and a small peak in high bias at the 
27-h forecast (valid at 03 UTC). At the lowest thresholds, the aggregate ensemble mean 
typically has higher values than the individual members; as threshold increases, this pivots to 
the ensemble mean having lower bias than the ensemble members. In general, this leads to 
lower bias for the ensemble mean, likely due to the coarser field. Similar to GSS, there is 
minimal spread among the individual ensemble members for all evaluated thresholds; spread 
does slightly increase throughout the model integration period and at higher thresholds. The 
winter season (not shown) also displays minimal spread, but the individual members as well as 
ensemble mean generally have frequency bias values near 1, with exception to the ≥25.4 
threshold. 
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a) 

 

b) 

 

c)

 

d) 

 

e) 

 
Figure 13. Frequency bias by forecast time time for 3-h accumulated precipitation for 0000 UTC 

initializations over the summer cases aggregated across the CONUS-East verification domain for a) 
≥0.254 mm, b) ≥2.54 mm, c) ≥6.35 mm, d) ≥12.7 mm, and e) ≥25.4 mm.  
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Composite Reflectivity 
GSS for composite reflectivity was evaluated for three thresholds (≥20 dBZ,  ≥30 dBZ, and ≥40 
dBZ; Fig. 14a-c) over the summer season. The ensemble mean for reflectivity was withheld, as 
statistically speaking, it is questionable to take a pure arithmetic mean of instantaneous and 
potentially discrete fields. As threshold increases, skill as well as the base rate decreases. At all 
thresholds, skill is highest at the earliest lead times, with an overall decrease in GSS as forecast 
lead time increases. Diurnal trends are also observed, with GSS decreasing throughout the 
daytime into early evening period, where a broad minimum in skill coincides with the highest 
base rate values. Skill then increases overnight, perhaps due to discrete convection evolving 
into larger, more organized MCSs; it is worth noting that peak in skill shifts toward earlier times 
as the threshold increases. As seen with accumulated precipitation, the ensemble has minimal 
overall spread, but a small increase in spread is observed at the longer lead times as the effects 
of the stochastic perturbations grow through the model integration. The winter season (not 
shown) has a general shift toward higher skill at the ≥20 dBZ and  ≥30 dBZ thresholds. Minimal 
spread is also noted, but compared to the summer season, there is a slight increase in spread. 
 

a)   

 

b)  

 

                                                    c) 

 
Figure 14. Gilbert Skill Score by forecast time time for composite reflectivity for 0000 UTC initializations 
over the summer cases aggregated across the CONUS-East verification domain for a) ≥20 dBZ, b) ≥30 

dBZ, c) ≥40 dBZ. The black line on the y-2 axis is the base rate. 
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At all evaluated composite reflectivity thresholds, forecasts perform quite well when considering 
frequency bias (Fig. 15a-c). At the ≥20 dBZ threshold, all forecast lead times have a slight low 
bias (i.e., under-forecast). As threshold increases, there is a shift toward higher frequency bias 
values, which is more amplified at longer forecast lead times, where at the ≥40 dBZ threshold, 
all forecast lead times at and beyond the 21-h forecast transition to having a small high bias. 
Diurnal variations in bias values are noted at all thresholds; a bimodal distribution of frequency 
bias is observed with minimum values late in the morning and early afternoon period (17 - 20 
UTC, depending on the threshold) and a smaller minimum in the early morning  (9 - 12 UTC, 
depending on the threshold). The timing of when the minimum in frequency bias transitions to 
higher values (17 - 20 UTC, depending on the threshold) coincides with the broad area of low 
GSS and high base rate values, potentially signalling an issue with the timing and or location of 
convective initiation. Maximum frequency bias values peak around 03 - 06 UTC at the  ≥20 dBZ 
threshold and around 01 - 02 UTC  at the ≥30 and ≥40 dBZ thresholds. The timing shifts in peak 
bias values for each threshold may provide insight on how the model evolves the convection in 
terms of spatial coverage and intensity and could be further explored using spatial verification 
techniques. When considering the ensemble membership, there is minimal overall spread, with 
any increase in spread seen as forecast lead time and threshold increase. The winter season 
(not shown) has a general shift toward higher biases at all thresholds. Minimal spread is also 
noted, but compared to the summer season, there is a slight increase in spread. 
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a)   

 

b)  

 

                                                    c) 

 
Figure 15. Frequency bias by forecast time time for composite reflectivity for 0000 UTC initializations 

over the summer cases aggregated across the CONUS-East verification domain for a) ≥20 dBZ, b) ≥30 
dBZ, c) ≥40 dBZ.  

Ensemble 

3-h Accumulated Precipitation 
While the traditional surface variable spread/skill plots showed a general lack of spread, the 
three-hour precipitation accumulation spread/skill plot shows a substantial impact from the 
Thompson MP perturbations (Fig. 16a).  Spread quickly increases with lead time, and by 24 
hours into the forecast, reaches a point where the spread/skill ratio is around 0.8, indicating that 
most of the RMSE is now being accounted for through the spread produced by the MP 
perturbations. 
 
Although the spread/skill ratio for three-hour precipitation accumulation has improved by the 24-
hour forecast, compared to the initialization, the rank histogram (Fig. 16b) still shows that the 
ensemble is under-dispersive, indicated by the classic U-shape of the plot.  However, the 
additional spread in the middle bins is evident when the three-hour precipitation accumulation 
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rank histogram is compared that of the 2-m temperature (Fig. 6a), dew point (Fig. 6b), and wind 
speed (Fig. 6c) rank histograms.  
 

a) 

 

b) 

 

 Figure 16. Spread/skill plot (a) as a function of forecast lead time and rank histogram (b) for three-hour 
precipitation accumulation.  Lines for (a) are the same as in Fig. 5. 

 
For 3-h accumulated precipitation, the most reliable (i.e. calibrated) forecasts are at the lowest 
threshold of ≥0.254 mm where the sample climatology is just over 10% (Fig 17a). At the higher 
forecast probabilities, and especially for the higher thresholds (not shown above 2.54 mm), the 
events are rare and the ensemble probabilities are poorly calibrated. There is a lack of skill at 
the highest thresholds examined (≥12.7 and 25.4 mm) with a tendency to over-forecast the 
probability of precipitation occurrence. As indicated for other variables, the ensemble tendency 
to under-forecast at the lower probabilities is noted for 24-accumulated precipitation forecasts at 
thresholds of ≥12.7mm and lower (i.e., ≥2.54 and ≥6.35 mm shown in Figure 18c,d) when the 
sample climatology is 10% or higher. For several thresholds, the 24-h accumulated forecast 
precipitation is skillful for the mid- to high-probabilities. At the highest threshold examined (≥2.54 
mm, not shown), the forecasts are only skillful at the lowest probabilities. All of these reliability 
diagrams show that the ensemble distinguishes between precipitation events and non-events in 
the highest and lowest probability categories. In each case, a small proportion of events are 
observed when the ensemble probability is low, and a much higher proportion of precipitation 
events occur when the ensemble probability is high. This is a desirable outcome. However, the 
graphs are very flat in the middle. This indicates the inability of the ensemble to effectively 
distinguish the middle probability categories from one another. Specifically, precipitation occurs 
with almost the same frequency whether the ensemble probability is 40% or 70%. A good 
deterministic forecast can distinguish between precipitation events and non-events. The goal of 
the ensemble is to provide information in those central probabilities. This one just barely 
accomplishes that goal.  
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a) 

 

b) 

 

c)

 

d) 

 

Figure 17. Reliability diagrams for 0000 UTC initializations over the summer cases aggregated across 
the CONUS-East verification domain for a) 3-h accumulated precipitation at a threshold of ≥0.254 mm, 

b) 3-h accumulated precipitation at a threshold of ≥2.54 mm, c) 24-h accumulated precipitation at a 
threshold of ≥2.54 mm, and d) 24-h accumulated precipitation at a threshold of ≥6.35 mm. The 

horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, the solid 
grey diagonal line represents perfect reliability, and the green shaded areas indicate skillful forecasts. 

Comparison of Ensemble Members to Control Member 
Comparison of perturbed ensemble members with the control member provides information 
about the effects of the perturbation. In particular, it is possible to assess how much the 
precipitation forecasts change due to the perturbations applied in the microphysics scheme. 
Standard precipitation verification metrics are applied, but the interpretation differs since this is a 
comparison. In a true verification, we look for errors and hope they are small. Here, we look for 
differences and hope to find some of reasonable size, indicating that our ensemble has some 
spread. If the control and perturbed ensemble members are very similar, then the ensemble has 
little spread. In this case, the ensemble and control members are nearly identical. The greatest 
differences are seen at the longest lead times and for the higher thresholds of precipitation, but 
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even these are quite small. Differences in perturbed ensemble members are small in both the 
summer and winter seasons. One example plot comparing the control and ensemble members 
for each of the seasons is included.  
 
Figure 18 is a performance diagram (Roebber, 2009), which shows the balance of detection and 
success (1-false alarm) rates. Additionally, it shows the frequency bias in dashed straight lines 
and curves of constant critical success index (CSI; Wilks, 2011). The red line shows the 
performance of the control forecast to detect 3-hr precipitation as observed by the MRMS for a 
variety of thresholds during the winter season over the eastern CONUS. The 18h lead time is 
used for this example, though other lead times have similar results. Overall, the frequency bias 
for each threshold is near one, which is very good. Skill, measured by CSI, ranges from above 
0.4 to near 0.1, decreasing with precipitation threshold. The perturbed ensemble members are 
nearly identical to each other and the control member for the lower thresholds, as indicated by 
the layering of points atop each other near the upper right of the diagram. Again, here we are 
not measuring skill, but agreement. These agree quite well. At higher thresholds, they match 
less well to the ensemble control and exhibit more spread. However, they are still very close to 
each other. Similar plots for the summer season results (not shown) exhibit even smaller 
differences in ensemble members, even at higher thresholds.  
 



27 

 
Figure 18. Performance diagram showing CONUS-East 3hr accumulated precipitation agreement with 
an 18h lead for all thresholds between control and MRMS (red) and ensemble members and control (all 

other colors) during winter.  

 
To determine if the precipitation spatial coverage is similar between the perturbed ensemble 
members and the control, we examine the frequency bias statistic. This measure is the ratio of 
the counts of locations with forecast precipitation above the threshold for the member divided by 
that of the control. When the total precipitation coverage has an identical number of locations, 
the ratio is one. However, these locations need to be coincident. Because the comparison is 
with the control rather than the observation, the information here is not how accurate is the 
spatial precipitation coverage, but how similar is it to the control.  For all thresholds and lead 
times, ensemble members produced very similar spatial coverage of precipitation (i.e. frequency 
biases near one). Figure 19 shows one example from the summer season in CONUS-East, for 
24-hour accumulated precipitation with a 24-hour lead time at a variety of thresholds. Each 
ensemble member differs no more than about half of one percent (<0.5%) from the control in 
the number of grid locations where precipitation is forecast to be greater than the threshold. The 
differences are least at the lower thresholds with slightly greater differences at the highest 
thresholds.   
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Figure 19. Series of frequency bias by threshold for perturbed ensemble members vs. control for 24h 

accumulated precipitation over CONUS-East for the summer season. 

Summary 
Using the previously established infrastructure to run a HRRR ensemble, a comprehensive 
testing and evaluation effort was undertaken to assess the implementation of SPP within the 
Thompson microphysics scheme. This report focused on evaluating traditional and ensemble 
verification for the 2017 warm season from model runs with all three stochastic parameter 
perturbations activated within the Thompson scheme (i.e., SPP applied to grapul treatment, 
cloud water distribution, and CCN activation). 
 
Surface Verification Findings 
In evaluating traditional metrics, temperature, dew point temperature, and wind speed exhibit 
little to no ensemble spread for approximately the first 12 - 16 hours of the forecast. However, 
ensemble spread does increase with forecast lead time, as anticipated. Bias, RMSE, and 
BCRMSE are not proportionally related to forecast lead time. Bias is minimal for all ensemble 
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members as is RMSE. Wind speed exhibits the largest member spread of the metrics in 
question. 
 
Evaluation of ensemble statistics revealed similar results to traditional methods with spread-skill 
plots, rank histograms, and reliability illustrating the small spread and under-dispersiveness of 
the ensemble members for temperature, dew point temperature, and wind speed.   
 
Vertical Verification Findings 
Evaluation of traditional metrics show that temperature, dew point temperature, and wind speed 
behave similarly to their surface counterparts, displaying small overall ensemble spread. A 
positive result is that all of the ensemble members displayed very low values of bias at all 
forecast hours examined. The behavior differs, however, with respect to ensemble spread and 
values of error with time. Temperature and dew point temperature reach peak RMSE values at 
forecast hour 24 while wind speed reaches its peak at forecast hour 36.  
 
In evaluating ensemble statistics, the same under-dispersive and low spread behavior was 
observed in the spread/skill plots and rank histograms as was observed for the surface 
counterparts of the variables. 
 
Accumulated Precipitation Findings 
The highest GSS values for the individual members were seen at the lowest thresholds and at 
the earlier forecast lead times. In addition, the ensemble mean has more skill than the envelope 
of individual members, but the skill differential between the mean and individual members 
decreased as threshold increased. 
 
All individual members produced forecasts that had minimal bias. As precipitation threshold 
increased, a general shift toward higher bias values was observed. At the lowest precipitation 
thresholds, the ensemble mean typically had smaller low bias values than the individual 
members; as the threshold increased, the ensemble mean had a smaller high bias than the 
ensemble members. With exception to the longer lead times at the lower precipitation 
thresholds, the ensemble mean generally performed better than the individual members. 
 
For evaluating traditional metrics such as GSS and frequency bias, the individual members are 
generally clustered closely together showing minimal spread; however, a slight uptick in spread 
is observed as forecast lead time increases and as precipitation threshold increases. 
 
Composite Reflectivity Findings 
For all evaluated thresholds and individual members, GSS is highest at the earliest lead times, 
with an overall decrease in skill throughout the forecast period. Distinct diurnal trends were 
noted, with skill decreasing throughout the daytime before rebounding in the overnight hours. 
 
Frequency bias values at all thresholds and for all members are often near 1, indicating 
minimally biased forecasts. In general, as threshold increases, there is a small increase in bias 



30 

values. Diurnal variations are noted, with maximums and minimums depending on the threshold 
being evaluated, but, overall, lower bias is seen during the morning and early afternoon with 
higher biases in the evening and overnight. 
 
Similar to accumulated precipitation, minimal spread was observed for both GSS and frequency 
bias. A slight increase in spread is seen with increasing forecast lead time and threshold. 
 
Ensemble Verification Findings 
Overall, ensemble spread of traditional metrics was hindered by the minimal impact that 
microphysics perturbations had on surface and upper-air temperature, dew point temperature, 
and wind speed.  However, it is important to note that the MP perturbations did provide valuable 
spread to 3-hr precipitation verification, accounting for a large portion of the RMSE by 24 hours 
into the forecast.  While these results were to be somewhat expected, they illustrate that the MP 
perturbations should ideally be used in concert with perturbations to other physics 
parameterizations in order to provide adequate spread. 
 
The rank histogram plots mirrored what was found in the spread/skill diagrams, showing a lack 
of spread for both surface and upper-air variables (somewhat less so for precipitation 
accumulation).  A number of rank histograms indicated a slight bias, but there was no 
systematic trend when considering all plots.  Instead, a consistent under-dispersive signal was 
seen, with too many observations falling in the lowest and highest bins. 
 
Reliability plots of surface temperature, dew point temperature, wind speed, and precipitation 
accumulation thresholds indicated a general tendency for the ensemble to underestimate 
occurrences of low probability events, and overestimate high probability events.  Consistent with 
an under-dispersive ensemble, these findings match the other verification metrics showing that 
insufficient spread hindered the ability of the ensemble to forecast over a wide range of events. 
 
Ensemble vs Control Member Findings 
A comparison of precipitation accumulation thresholds for the control and ensemble members 
indicated that they all forecast about the same amount of precipitation over the domain, 
regardless of season, threshold, or lead time. The ensemble members that contain MP 
perturbations are quite skilled at replicating the precipitation from the control, even when the 
control lacks skill in replicating observed precipitation from MRMS.  Spread in skill/frequency 
bias increases with increasing precipitation accumulation threshold and lead time. Direct 
comparison of the perturbed ensemble members with the control member provides 
complementary information to traditional information available via evaluations versus 
observations.   
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