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Introduction

In most existing regional ensemble systems, model-related forecast uncertainty is addressed by
using multiple dynamic cores, multiple physics suites, or a combination thereof. While such
multi-model ensembles have demonstrated potential, their maintenance is resource-intensive.
More importantly, probabilistic forecasts from multi-model ensembles do not have consistent
distributions since each member can have a different mean error and variance. Post-processing
generally assumes independent and identically distributed random variables, a requirement that
is not met by multi-model ensemble systems. To facilitate a sustainable and unified operational
forecasting system, we propose to extensively test an alternative option for creating desirable
spread and reliability by perturbing the members stochastically within a storm-scale ensemble.
The stochastic-dynamic approach results in statistically consistent ensemble distributions. Two
widely used stochastic schemes are the Stochastic-Kinetic Energy Backscatter (SKEB; Shutts
2005, Berner et al. 2009) and the Stochastic Perturbations of Physics Tendencies (SPPT;
Buizza et al. 1999, Palmer et al. 2009). These methods are formulated to represent the effect of
unresolved subgrid-scale variability and are added a posteriori to independently tuned models.
An additional approach is the Stochastic Parameter Perturbation (SPP) scheme, which targets
parameter uncertainty in the physical parameterization schemes directly.

Experiment design

Model

In 2016, the DTC Regional Ensemble Task successfully built the necessary infrastructure for
execution of a High Resolution Rapid Refresh (HRRR) ensemble for prolonged retrospective
runs [the HRRR represents a specific configuration of the Weather Research and Forecasting
(WRF; Skamarock et al. 2008) model using a highly tuned set of physical parameterizations].
The developed framework also took advantage of an option in WRF to generate random
perturbations that can be applied to a variety of parameters in physics schemes.

Based on promising results from 2016, where the SPP option was implemented in both the
HRRR Planetary Boundary Layer (PBL) and Land Surface Model (LSM) schemes (results
described in Jankov et al. 2017), the DTC Regional Ensemble Task proposed continued testing
of stochastic physics in 2017. Research for this performance period focused on implementing
SPP within the Thompson microphysics scheme (Thompson and Eidhammer 2014). In
particular, the SPP method was employed to to treat known parameter uncertainties for three
aspects within the scheme: (a) the relationship used to specify the Y-intercept parameter of the
assumed inverse exponential size distribution for graupel, (b) the shape factor of the
generalized gamma size distribution of cloud water droplets, and (c) cloud condensation nuclei
activation via consideration of sub-grid scale eddies with higher supersaturation.



SPP applied to graupel treatment

The first stochastic parameter perturbation applied relates to parameters that fundamentally
control the size spectra of the graupel/hail hybrid category. The assumed number density
function for this category follows a generalized gamma distribution of the following form:

N(D) = No D* &, (Eq. 1)

where D is the droplet diameter, Ny is the intercept parameter, u is the shape parameter, and A
is the slope.

The Thompson bulk microphysics parameterization was specifically designed to predict only
one free variable of a mixed or hybrid graupel/hail category, its mass mixing ratio, in order to
reduce computational cost as compared to fully double-moment schemes. One-moment
schemes typically assume an inverse-exponential size distribution (u = 0 in Eq. 1) with an a
priori assigned and constant Y-intercept parameter. Numerous observations from aircraft and
surface measuring campaigns (e.g., McFarquhar and Black, 2004; Knight et al, 1982) generally
support this distribution shape, although the intercept parameter has been known for decades to
vary by as many as 2-3 orders of magnitude.

Since using a fixed intercept parameter was known to be a problem when G. Thompson
developed the scheme, he used a relationship combining graupel mass mixing ratio and amount
of supercooled liquid water to compute a space/time-varying Y intercept parameter
diagnostically during a simulation. From prior observational studies, the intercept parameter is
permitted to vary from 10* to 10® m™ consistent with overall observations, but the diagnostic
relationship itself was ad hoc and not well tested. The McFarquhar and Black (2004)
observations contradict the scheme’s existing diagnostic relation for decreasing intercept
parameter as a function of higher graupel mixing ratio (Fig. 1); although their observations were
collected in tropical storms so their applicability to mid-latitude deep convection is unknown.
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Figure 1. The current graupel/hail Y-intercept relationship is shown as the colored parabolic surface as
a function of both graupel mixing ratio and supercooled water content. Note that as graupel mixing
ratio increases, the intercept parameter decreases. The SPP technique will result in a “cloud” of points
represented by the semi-transparent gray cylinder.

Therefore, the SPP technique together with a pre-determined probability density function (PDF)
that aligns well with the variability found in observations to choose a variable Y-intercept
parameter was employed. Rather than choosing an entirely randomly generated number that is
directly scaled to become a value of intercept parameter, an ellipsoid of values that produce the
highest probability of occurrence to match the McFarquhar and Black (2004) observations was
created.

SPP applied to cloud water distribution

The SPP technique was also applied to the value of the shape parameter (u) of the generalized
gamma distribution of the cloud water variable to vary between 2 and 15. In the case of the
standard code without the use of SPP, the value of y is determined diagnostically from the cloud
droplet number concentration, which was chosen to follow observations by Martin et al (1994).
Their data also showed considerable spread, so we choose to permit a variety of possible
outcomes of the diagnosed value of p using SPP while centering the perturbation near zero but
permitting deviations of 6 integer values. In other words, if the diagnosed p resulted in 8, then it
was perturbed to vary as far as 2 and 14, but the nature of the Gaussian perturbations would
rarely result in values reaching those extremes. Using J to alter the size distribution assumption
greatly alters the mean diameter of the particles (Fig. 2), which will have an immediate impact
on the initial formation of rain from the scheme’s autoconverson. Other potential side effects of
changing cloud droplet sizes include snow riming (collection of cloud water by falling snow), rate
of ice nucleation (which is a function of drop size), and the potential for lofting the smaller cloud
droplets higher in the vertical within convective updrafts. As such, the total changes to the entire
system are highly non-linear and include initial rain formation, cloud growth, ice formation, etc.
and, therefore, have the potential for greatly impacting evaporative cooling and resulting
convective cold pools (Morrison et al., 2012). By altering cold pool strength and propagation
speed, there will be impacts to convective forecasts, especially after convective initiation.



Figure 2. Number distribution of particles as a function of diameter (Eq. 1) using a generalized gamma
function with shape parameter u = 2 (left curve) and u = 12 (right curve).

SPP applied to CCN activation

The final application of SPP was designed to affect the activation of water-friendly aerosols as
cloud condensation nuclei (CCN). In general, the Thompson and Eidhammer (2014) aerosol-
aware microphysics parameterization is likely to produce too few CCN because it utilizes only
the WRF model grid-scale vertical velocity, w. Since even convection-allowing models at
approximately 3-km grid spacing do not fully predict all scales of vertical motions in the
atmosphere, we decided to account for some of this uncertainty by perturbing w only for the
purpose of determining what number of CCN activate from a look-up table. In order to avoid a
lack of CCN activation, we only applied positive perturbations to w since negative perturbations
could inhibit proper CCN activation entirely. Also, due to comparisons of cloud water drop
number and size in a climatological sense by Thompson et al. (2017), we determined that
boosting the CCN activation might generally lead to a better match to observations in general.

SPP experiments

For all experiments, the latest version of the WRF-based HRRR system was used. The
Contiguous U.S. (CONUS) domain contained 1536 x 1024 grid points and 50 vertical levels with
a model top of 20 hPa. The numerics of WRF are well documented in other publications and,
thus, not described herein.

The forecasts were conducted as cold starts, producing 36-hour forecasts in hourly increments.
Tests were initialized every-other-day during the 2017 warm season from 2 May - 31 July 2017
at 00 UTC. Also, since the microphysics scheme is used year-round and needs to perform
equally well in the cool season, cases initialized daily at 00 UTC from 1-31 December 2016
were also run to ensure the proposed ensemble system does not deteriorate forecasts in the
cool season when deep convection is essentially absent from the CONUS.

In order to assess whether including SPP within microphysics improves the ensemble forecast
spread, an eight-member ensemble was run. The first member of the subset was identical to the
deterministic HRRR setup with no stochastic technique applied (considered the “control”



member), while the remaining seven members each employed SPP within the Thompson
microphysics scheme for the three aspects of interest described above.

A second test for future comparison is also being run that utilizes the SPP technique within the
PBL parameterization scheme (for parameters including turbulent mixing length, sub-grid cloud
fraction, thermal and moisture roughness lengths, and Prandtl number) in addition to the
microphysics scheme perturbations to assess the cumulative impact on ensemble forecast
spread.

Observations

RAP observation files in BUFR format, which include conventional surface and upper-air data,
were used for verification of point-based fields, including temperature, dew point temperature,
and wind speed. Bilinear interpolation was applied to match the point observations with the
gridded model output. The Multi-Radar/Multi-Sensor (MRMS) dataset was used as the
observational analysis product for the precipitation accumulation and composite reflectivity
gridded comparisons. The MRMS data was regridded to the model integration domain to allow
for grid-to-grid comparisons. Budget interpolation was used for the quantitative precipitation
estimate (QPE) field, while the nearest neighbor approach was used for the composite
reflectivity.

Model verification approaches

A variety of methods can be used to conduct an evaluation of both deterministic and
probabilistic forecasts. To support this analysis, the DTC developed and supported Model
Evaluation Tools (MET) verification software system was used. Metrics applied for this study
included traditional methods commonly used in the community for both deterministic and
probabilistic forecast performance assessment. More information on all of the metrics used for
this work can be found in the MET Users’ Guide (2017) and Wilks (2011).

Deterministic verification metrics

Standard verification statistics were computed for surface (including precipitation) and upper-air
variables over the 3-km HRRR domain and were aggregated over the CONUS, CONUS-East,
and CONUS-West verification domains. Focus for this report will mainly be placed on the
CONUS-East domain and the summer season runs for brevity. Metrics calculated for both
surface and upper-air temperature, dew point temperature, and wind speed consisted of mean
error, or the measure of overall bias for continuous variables, and (bias corrected) root-mean-
square error ((BC)RMSE). For upper-air results, verification statistics were computed for times
valid at 00 and 12 UTC for the mandatory levels and surface verification results were computed
for the full 36-h forecast length in 1-h increments. When evaluating precipitation and composite
reflectivity, two key statistics were used in this study. The first was Gilbert Skill Score (GSS),
which is the fraction of observed events that were correctly predicted (or hits over the total



forecast and observed area) and adjusted for random hits. The second was frequency bias,
which is the ratio of the frequency of forecast events to observed events (or total forecast area
divided by the total observed area). Due to conducting the experiment with cold starts, for
precipitation and composite reflectivity analysis, the first 6 hours of the forecast are discarded.

Ensemble verification metrics

In the course of this evaluation, several ensemble verification metrics were also applied to
assess the ensemble performance. These included: (a) spread, the standard deviation of the
individual member forecasts compared to the ensemble mean, (b) Brier score, a measure of the
mean squared probability error, (c) reliability diagram, showing observed frequency of events
versus the forecast probability of those events, (d) Relative Operating Characteristic (ROC)
curve, a measure of resolution given by the ability of the forecast to discriminate between two
alternative outcomes, and (e) rank histogram, to compare the rank of the observations to all
members of the ensemble forecast. A subset of these results will be described in detail for this
report.

Verification results

Surface verification

Traditional

Figure 3 displays the summary median bias for surface temperature, dew point temperature,
and wind speed across the summer forecast period (May 2 - July 31 2017). Overall, there are
relatively small bias values and minimal ensemble spread at all forecast hours for all three
surface variables. In all cases, the bias is positive - typically less than 0.6 °C for temperature,
1.2 °C for dew point temperature, and 1 ms™ for wind speed. Ensemble spread is negligible in
the first 12 forecast hours; however, ensemble spread increases in the latter half of the forecast,
with the largest spread (though still relatively small) occurring over the longer forecast lead
times (e.g. forecast hours 30 and greater). Ensemble spread increasing with forecast length is
expected as the effects of the stochastic perturbations on the environment are more apparent
with time.
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Figure 3. Bias by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature, and c) 10-m
wind speed for 0000 UTC initializations over the summer cases aggregated across the CONUS-East
verification domain.

Figure 4 illustrates the summary median RMSE for the three surface variables. Overall, the
behavior of this metric is similar to bias: minimal ensemble spread that increases with forecast
lead time. Additionally, the values of RMSE are also small, on the order of 1 - 2 degrees/ms™.
Unlike temperature and dew point temperature, the individual ensemble members for 10-m wind
speed are clustered together with higher error than the ensemble mean (Fig 4c). The BCRMSE
for the surface parameters exhibits the same trends as in the RMSE (not shown).
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Figure 4. RMSE by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature, and c)

10-m wind speed for 0000 UTC initializations over the summer cases aggregated across the CONUS-
East verification domain.

Ensemble

Surface verification revealed very little spread compared to the measured RMSE during the
three month summer period for the variables analyzed over the CONUS-East domain.
Spread/skill plots for 2-m temperature (Fig. 5a), dew point temperature (Fig. 5b), and 10-m wind
speed (Fig. 5¢) indicate that, while spread increases slowly with forecast lead time, the
ensemble lacks sufficient spread to account for the amount of error. Ideally, the spread/skill ratio
would be equal to one; it is significantly lower than one in all cases due to the insufficient
spread. This result was somewhat expected, given that the sole source of ensemble spread is

coming from the microphysics perturbations and, therefore, only has an indirect impact on the
these particular surface variables.
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Figure 5. Spread/skill plots by forecast lead time for a) 2-m temperature, b) 2-m dew point temperature,
and c) 10-m wind speed for 0000 UTC initializations over the summer cases aggregated across the
CONUS-East verification domain. Skill (RMSE) is designated by the blue line, spread by the red line,
and spread/skill ratio by the green line.

Rank histograms for the same surface variables over the CONUS-East domain are shown in
Figure 6, averaged over the first 24 hours of the forecast. The under-dispersiveness seen from
the spread/skill plots is also seen in the rank histograms, denoted by the U-shaped plot for 2-m
temperature (Fig. 6a), 2-m dew point temperature (Fig. 6b), and 10-m wind speed (Fig. 6¢).
There is also a slight hint of a high bias for each surface variable, as more observations fall in
the first bin, rather than the last.

10



Summer Z2 TMP for {24 Z2 DPT for 124
EAST 002 EAST 00Z

o Ml HE e e e owm ows " s o s em =s Em
2 3 4 6 7 8 2 3 4 5 6 7 8 9
Bins Bins

Z10 WIND for {24
EAST 002

05

04

03

02

o H = = = = = 1

2 3 4 5 6 7 8 9
Bins

Figure 6. Rank histogram plots for a) 2-m temperature, b) 2-m dew point temperature, and c) 10-m
wind speed averaged over the first 24 hours of the forecast.

Reliability is a measure of conditional frequency bias. Within each probability category for the
forecast, we examine the frequency of occurrence of the observed events. When assessing
ensembles using reliability diagrams, the forecast probabilities are binned and assessed against
the observed frequency. Thus, perfect reliability would be when the forecast and observed
frequencies in each category are equal and lie along the 1-to-1 line. In addition, the “no
resolution” line (or sample base rate) is plotted as the horizontal dashed line and corresponds to
a uniform forecast of the climatological frequency of the event. The “no skill” line is indicated by
the diagonal dashed line that lies halfway between the climatology and perfect reliability lines.
Given these parameters, the area where the probabilistic forecast is skillful is indicated by the
green shading in Figure 7. To illustrate the performance for 2-m temperature, 2-m dew point
temperature and 10-m wind speed, thresholds that yielded a sample climatology of
approximately 60% were chosen leading to a temperature threshold of 2293 K, dew point
temperature threshold of 2288 K, and wind speed threshold of 22 ms™. In all cases the reliability
curve has a positive slope, indicating that, to at least a certain degree, as the forecast
probability increase, so too does the observed frequency; however, the slope is less than the
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diagonal. In general, for the lower forecast probabilities the ensemble tends to under-forecast
the event probability transitioning to over-forecasting the event probability. This is a common
feature of under-dispersive ensembles. When assessing thresholds with lower sample base
rates (e.g., higher temperature, dew point temperature, and wind speed values; not shown), the
forecasts tend to over-forecast observed event frequencies, with a lack of skill evident at the
higher probabilities.
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Figure 7. Reliability diagrams for 0000 UTC initializations over the summer cases aggregated across
the CONUS-East verification domain for a) surface temperature at a threshold of 2293 K, b) surface
dew point temperature at a threshold of 2288 K, and c) surface wind speed at a threshold of 22 ms™.
The horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, the solid
grey diagonal line represents perfect reliability, and the green shaded areas indicate skillful forecasts.
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Upper-air verification

Traditional

Figure 8 illustrates the vertical profile of mean error at the 24 hour forecast lead time. As
exhibited by their surface counterparts, the biases for temperature and wind speed are relatively
small (less than 1 degree/ms™). On the other hand, dew point temperature exhibits positive
biases increasing with height to 3 °C at 500 hPa. Ensemble spread is relatively small near the
surface between 925 - 850 hPa and relatively larger in the mid- to upper-levels. Temperature

and wind speed have a general cool/slow bias that increases with height while the opposite is
true for dew point temperature.
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Figure 8. Vertical profile of bias at forecast hour 24 for a) temperature, b) dew point temperature, and
¢) wind speed for the 0000 UTC initializations over the summer cases aggregated across the CONUS-
East verification domain.
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Figure 9 displays the RMSE as a function of pressure level for each variable at the 24 hour
forecast lead time. Temperature and dew point temperature exhibit very minimal ensemble
spread from 925 - 850 hPa and up to 700 hPa for dew point (Fig. 9b). Wind speed exhibited the
most spread among ensemble members, especially in the lower- to mid-levels (Fig. 9c). Vertical
profiles of BCRMSE display very similar trends to RMSE for the three variables discussed (not
shown). The value of RMSE increase with forecast lead time for all variables. The ensemble
spread does not always increase, however, unlike the surface counterparts. The RMSE for
temperature and dew point temperature reach peak values at forecast hour 24 (Fig. 9a-b).
RMSE for wind speed reaches its maximum value at forecast hour 36 (not shown).
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Figure 9. Vertical profile of RMSE at forecast hour 24 for a) temperature, b) dew point temperature,
and c) wind speed for the 0000 UTC initializations over the summer cases aggregated across the
CONUS-East verification domain.

14




Ensemble

Upper-air spread/skill plots for 500 hPa temperature, dew point temperature, and wind speed
are shown in Figure 10. Insufficient spread aloft results in very low spread/skill ratios for these
variables, although spread does increase with forecast lead time. Overall, it is clear that the
microphysics parameter perturbations alone are not sufficient to produce the necessary spread
in upper-air variables, following along the lines of spread/skill plots for surface variables (Fig. 5).
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Figure 10. Upper-air (500 hPa) spread/skill plots by forecast lead time for a) temperature, b) dew point
temperature, and c) wind speed for 0000 UTC initializations over the summer cases aggregated across
the CONUS-East verification domain. Skill (RMSE) is designated by the blue line, spread by the red
line, and spread/skill ratio by the green line.

Given the lack of spread aloft, the rank histograms for 500 hPa temperature (Fig. 11a), dew
point temperature (Fig. 11b), and wind speed (Fig. 11c) also illustrate the under-dispersive
nature of the ensemble for these variables. The same U-shape as was seen for the surface
variable rank histograms (Fig. 6) is noted in these plots. There is again some indication of bias
for these variables, with 500-hPa temperature (Fig. 11a) and wind speed (Fig. 11c) values
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showing a tendency to be too low with more observations falling in the last bin than in the first.
The rank histogram for 500-hPa dew point temperature (Fig. 11b) values indicate an opposite
trend, with more observations falling in the lowest bin indicating the forecast values are too high.
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Figure 11. Rank histogram plots for 500 hPa a) temperature, b) dew point temperature, and c) and
wind speed averaged over the first 24 hours of the forecast.

Reliability diagrams for upper-air temperature, dew point temperature, and wind speed at a
variety of thresholds and pressure levels were examined. In most cases the vast majority of
data were in the 0 and 0.9 bins (lowest and highest, respectively), both of which had very
reliable forecasts; however, there were an insufficient number of cases in the middle bins, so
they are excluded from this analysis.
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Precipitation and composite reflectivity verification

Traditional

3-h Accumulated Precipitation

Figure 12a-e shows GSS for 3-h accumulated precipitation at 5 thresholds (=20.254 mm, >2.54
mm, 26.35 mm, 212.7 mm, and 225.4 mm) aggregated over the summer cases. When
interpreting precipitation verification, it is necessary to consider the base rate (i.e., ratio of total
observed grid-box events to the total number of grid boxes summed over all cases; black line on
y-2 axis in Fig. 12) to better understand the underlying sample and how it affects the statistical
results. The base rate is highest at the lowest thresholds and from 21 — 00 UTC and decreases
to near zero at the higher thresholds. Overall, skill for the individual ensemble members and the
ensemble mean is generally highest at the smallest thresholds and at the earlier forecast lead
times, with a gentle decrease in skill by the end of the forecast integration period. For all
thresholds except 225.4 mm, a bimodal diurnal signal is observed with peak values at 06 — 09
UTC, when the base rate is lowest, along with a smaller secondary peak at 21 UTC. All
members are generally clustered together showing minimal spread; however, a slight increase
in spread is observed as forecast lead time increases and as precipitation threshold increases.
The growth in spread with forecast lead time is likely attributed to the cumulative effects from
the stochastic perturbations throughout the model integration (e.g., convection during day 1 may
have effects on boundary locations up during day 2). In general, the aggregate ensemble mean
has more skill than the envelope of individual members, but the gain in skill from the ensemble
mean decreases as threshold increases. The increase in skill from the pure arithmetic ensemble
mean is likely due to the individual forecasts being averaged together resulting in a smoother
forecast with more spatial coverage; these types of coarse fields generally verify better than
high-resolution fields when using traditional verification metrics. While not shown, results for the
aggregation of winter cases share similar outcomes as the summer season. Generally, there is
small spread among the members, which increases as forecast lead time and threshold
increases. One noted difference in the winter season is at the lower thresholds, where the
ensemble mean is closer to the individual members than in the summer cases. This may be
attributed to synoptic-scale features more often seen in winter precipitation, which are typically
smoother and larger in spatial coverage than more discrete mesoscale features commonly seen
in the summer.
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Figure 12. Gilbert Skill Score by forecast time time for 3-h accumulated precipitation for 0000 UTC
initializations over the summer cases aggregated across the CONUS-East verification domain for a)
20.254 mm, b) 22.54 mm, ¢) 26.35 mm, d) 212.7 mm, and e) 225.4 mm. The black line on the y-2 axis
is the base rate.
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When evaluating 3-h accumulated precipitation frequency bias over the summer cases,
forecasts generally perform well with most thresholds having bias values close to 1 (i.e.,
unbiased; Fig. 13a-e). For the individual members, there is a small under-forecast at the early-
to-middle forecast lead times for the lower thresholds; this transitions to an over-forecast at the
highest thresholds. A slight diurnal signal is also noted for the 20.254 to 212.7 mm thresholds,
with the smallest bias values around forecast hours 18 — 21 and a small peak in high bias at the
27-h forecast (valid at 03 UTC). At the lowest thresholds, the aggregate ensemble mean
typically has higher values than the individual members; as threshold increases, this pivots to
the ensemble mean having lower bias than the ensemble members. In general, this leads to
lower bias for the ensemble mean, likely due to the coarser field. Similar to GSS, there is
minimal spread among the individual ensemble members for all evaluated thresholds; spread
does slightly increase throughout the model integration period and at higher thresholds. The
winter season (not shown) also displays minimal spread, but the individual members as well as
ensemble mean generally have frequency bias values near 1, with exception to the 225.4
threshold.
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Figure 13. Frequency bias by forecast time time for 3-h accumulated precipitation for 0000 UTC
initializations over the summer cases aggregated across the CONUS-East verification domain for a)
20.254 mm, b) 22.54 mm, c¢) 26.35 mm, d) 212.7 mm, and e) 225.4 mm.
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Composite Reflectivity

GSS for composite reflectivity was evaluated for three thresholds (=20 dBZ, =30 dBZ, and 240
dBZ; Fig. 14a-c) over the summer season. The ensemble mean for reflectivity was withheld, as
statistically speaking, it is questionable to take a pure arithmetic mean of instantaneous and
potentially discrete fields. As threshold increases, skill as well as the base rate decreases. At all
thresholds, skill is highest at the earliest lead times, with an overall decrease in GSS as forecast
lead time increases. Diurnal trends are also observed, with GSS decreasing throughout the
daytime into early evening period, where a broad minimum in skill coincides with the highest
base rate values. Skill then increases overnight, perhaps due to discrete convection evolving
into larger, more organized MCSs; it is worth noting that peak in skill shifts toward earlier times
as the threshold increases. As seen with accumulated precipitation, the ensemble has minimal
overall spread, but a small increase in spread is observed at the longer lead times as the effects
of the stochastic perturbations grow through the model integration. The winter season (not
shown) has a general shift toward higher skill at the 220 dBZ and =30 dBZ thresholds. Minimal
spread is also noted, but compared to the summer season, there is a slight increase in spread.
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Figure 14. Gilbert Skill Score by forecast time time for composite reflectivity for 0000 UTC initializations
over the summer cases aggregated across the CONUS-East verification domain for a) 220 dBZ, b) 230
dBZ, c) 240 dBZ. The black line on the y-2 axis is the base rate.
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At all evaluated composite reflectivity thresholds, forecasts perform quite well when considering
frequency bias (Fig. 15a-c). At the 220 dBZ threshold, all forecast lead times have a slight low
bias (i.e., under-forecast). As threshold increases, there is a shift toward higher frequency bias
values, which is more amplified at longer forecast lead times, where at the 240 dBZ threshold,
all forecast lead times at and beyond the 21-h forecast transition to having a small high bias.
Diurnal variations in bias values are noted at all thresholds; a bimodal distribution of frequency
bias is observed with minimum values late in the morning and early afternoon period (17 - 20
UTC, depending on the threshold) and a smaller minimum in the early morning (9 - 12 UTC,
depending on the threshold). The timing of when the minimum in frequency bias transitions to
higher values (17 - 20 UTC, depending on the threshold) coincides with the broad area of low
GSS and high base rate values, potentially signalling an issue with the timing and or location of
convective initiation. Maximum frequency bias values peak around 03 - 06 UTC at the =20 dBZ
threshold and around 01 - 02 UTC at the 230 and 240 dBZ thresholds. The timing shifts in peak
bias values for each threshold may provide insight on how the model evolves the convection in
terms of spatial coverage and intensity and could be further explored using spatial verification
techniques. When considering the ensemble membership, there is minimal overall spread, with
any increase in spread seen as forecast lead time and threshold increase. The winter season
(not shown) has a general shift toward higher biases at all thresholds. Minimal spread is also
noted, but compared to the summer season, there is a slight increase in spread.
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Figure 15. Frequency bias by forecast time time for composite reflectivity for 0000 UTC initializations
over the summer cases aggregated across the CONUS-East verification domain for a) 220 dBZ, b) 230
dBZ, c) 240 dBZ.

Ensemble

3-h Accumulated Precipitation

While the traditional surface variable spread/skill plots showed a general lack of spread, the
three-hour precipitation accumulation spread/skill plot shows a substantial impact from the
Thompson MP perturbations (Fig. 16a). Spread quickly increases with lead time, and by 24
hours into the forecast, reaches a point where the spread/skill ratio is around 0.8, indicating that
most of the RMSE is now being accounted for through the spread produced by the MP
perturbations.

Although the spread/skill ratio for three-hour precipitation accumulation has improved by the 24-
hour forecast, compared to the initialization, the rank histogram (Fig. 16b) still shows that the
ensemble is under-dispersive, indicated by the classic U-shape of the plot. However, the
additional spread in the middle bins is evident when the three-hour precipitation accumulation
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rank histogram is compared that of the 2-m temperature (Fig. 6a), dew point (Fig. 6b), and wind
speed (Fig. 6¢) rank histograms.
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Figure 16. Spread/skill plot (a) as a function of forecast lead time and rank histogram (b) for three-hour
precipitation accumulation. Lines for (a) are the same as in Fig. 5.

For 3-h accumulated precipitation, the most reliable (i.e. calibrated) forecasts are at the lowest
threshold of 20.254 mm where the sample climatology is just over 10% (Fig 17a). At the higher
forecast probabilities, and especially for the higher thresholds (not shown above 2.54 mm), the
events are rare and the ensemble probabilities are poorly calibrated. There is a lack of skill at
the highest thresholds examined (212.7 and 25.4 mm) with a tendency to over-forecast the
probability of precipitation occurrence. As indicated for other variables, the ensemble tendency
to under-forecast at the lower probabilities is noted for 24-accumulated precipitation forecasts at
thresholds of 212.7mm and lower (i.e., 22.54 and 26.35 mm shown in Figure 18c,d) when the
sample climatology is 10% or higher. For several thresholds, the 24-h accumulated forecast
precipitation is skillful for the mid- to high-probabilities. At the highest threshold examined (=2.54
mm, not shown), the forecasts are only skillful at the lowest probabilities. All of these reliability
diagrams show that the ensemble distinguishes between precipitation events and non-events in
the highest and lowest probability categories. In each case, a small proportion of events are
observed when the ensemble probability is low, and a much higher proportion of precipitation
events occur when the ensemble probability is high. This is a desirable outcome. However, the
graphs are very flat in the middle. This indicates the inability of the ensemble to effectively
distinguish the middle probability categories from one another. Specifically, precipitation occurs
with almost the same frequency whether the ensemble probability is 40% or 70%. A good
deterministic forecast can distinguish between precipitation events and non-events. The goal of
the ensemble is to provide information in those central probabilities. This one just barely
accomplishes that goal.
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Figure 17. Reliability diagrams for 0000 UTC initializations over the summer cases aggregated across
the CONUS-East verification domain for a) 3-h accumulated precipitation at a threshold of 20.254 mm,
b) 3-h accumulated precipitation at a threshold of 22.54 mm, c) 24-h accumulated precipitation at a
threshold of 22.54 mm, and d) 24-h accumulated precipitation at a threshold of 26.35 mm. The
horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, the solid
grey diagonal line represents perfect reliability, and the green shaded areas indicate skillful forecasts.

Comparison of Ensemble Members to Control Member

Comparison of perturbed ensemble members with the control member provides information
about the effects of the perturbation. In particular, it is possible to assess how much the
precipitation forecasts change due to the perturbations applied in the microphysics scheme.
Standard precipitation verification metrics are applied, but the interpretation differs since this is a
comparison. In a true verification, we look for errors and hope they are small. Here, we look for
differences and hope to find some of reasonable size, indicating that our ensemble has some
spread. If the control and perturbed ensemble members are very similar, then the ensemble has
little spread. In this case, the ensemble and control members are nearly identical. The greatest
differences are seen at the longest lead times and for the higher thresholds of precipitation, but
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even these are quite small. Differences in perturbed ensemble members are small in both the
summer and winter seasons. One example plot comparing the control and ensemble members
for each of the seasons is included.

Figure 18 is a performance diagram (Roebber, 2009), which shows the balance of detection and
success (1-false alarm) rates. Additionally, it shows the frequency bias in dashed straight lines
and curves of constant critical success index (CSI; Wilks, 2011). The red line shows the
performance of the control forecast to detect 3-hr precipitation as observed by the MRMS for a
variety of thresholds during the winter season over the eastern CONUS. The 18h lead time is
used for this example, though other lead times have similar results. Overall, the frequency bias
for each threshold is near one, which is very good. Skill, measured by CSlI, ranges from above
0.4 to near 0.1, decreasing with precipitation threshold. The perturbed ensemble members are
nearly identical to each other and the control member for the lower thresholds, as indicated by
the layering of points atop each other near the upper right of the diagram. Again, here we are
not measuring skill, but agreement. These agree quite well. At higher thresholds, they match
less well to the ensemble control and exhibit more spread. However, they are still very close to
each other. Similar plots for the summer season results (not shown) exhibit even smaller
differences in ensemble members, even at higher thresholds.
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Figure 18. Performance diagram showing CONUS-East 3hr accumulated precipitation agreement with
an 18h lead for all thresholds between control and MRMS (red) and ensemble members and control (all
other colors) during winter.

To determine if the precipitation spatial coverage is similar between the perturbed ensemble
members and the control, we examine the frequency bias statistic. This measure is the ratio of
the counts of locations with forecast precipitation above the threshold for the member divided by
that of the control. When the total precipitation coverage has an identical number of locations,
the ratio is one. However, these locations need to be coincident. Because the comparison is
with the control rather than the observation, the information here is not how accurate is the
spatial precipitation coverage, but how similar is it to the control. For all thresholds and lead
times, ensemble members produced very similar spatial coverage of precipitation (i.e. frequency
biases near one). Figure 19 shows one example from the summer season in CONUS-East, for
24-hour accumulated precipitation with a 24-hour lead time at a variety of thresholds. Each
ensemble member differs no more than about half of one percent (<0.5%) from the control in
the number of grid locations where precipitation is forecast to be greater than the threshold. The
differences are least at the lower thresholds with slightly greater differences at the highest
thresholds.

27



APCP 24 hr East Summer, Lead 24
1.004
— ¢ ~
-t ‘_E_ - ~—
~ ~—
1.002 o, o T
/ P R g ~ o
-~ /// \\\
? ~ ™
// d \\\
w1000 1< e N
< e Ea— . N
E .
w ..
0.998 T
L
" e
0.996
>=0.254 >=2.540 >=6.350 >=12.700 >=25.400
LEAD
Mem 1 Mem 4 * Mam7
—e Mem 2 Mem §
Mem 3 Mem 6
Figure 19. Series of frequency bias by threshold for perturbed ensemble members vs. control for 24h
accumulated precipitation over CONUS-East for the summer season.

Summary

Using the previously established infrastructure to run a HRRR ensemble, a comprehensive
testing and evaluation effort was undertaken to assess the implementation of SPP within the
Thompson microphysics scheme. This report focused on evaluating traditional and ensemble
verification for the 2017 warm season from model runs with all three stochastic parameter
perturbations activated within the Thompson scheme (i.e., SPP applied to grapul treatment,
cloud water distribution, and CCN activation).

Surface Verification Findings

In evaluating traditional metrics, temperature, dew point temperature, and wind speed exhibit
little to no ensemble spread for approximately the first 12 - 16 hours of the forecast. However,
ensemble spread does increase with forecast lead time, as anticipated. Bias, RMSE, and
BCRMSE are not proportionally related to forecast lead time. Bias is minimal for all ensemble

28



members as is RMSE. Wind speed exhibits the largest member spread of the metrics in
question.

Evaluation of ensemble statistics revealed similar results to traditional methods with spread-skill
plots, rank histograms, and reliability illustrating the small spread and under-dispersiveness of
the ensemble members for temperature, dew point temperature, and wind speed.

Vertical Verification Findings

Evaluation of traditional metrics show that temperature, dew point temperature, and wind speed
behave similarly to their surface counterparts, displaying small overall ensemble spread. A
positive result is that all of the ensemble members displayed very low values of bias at all
forecast hours examined. The behavior differs, however, with respect to ensemble spread and
values of error with time. Temperature and dew point temperature reach peak RMSE values at
forecast hour 24 while wind speed reaches its peak at forecast hour 36.

In evaluating ensemble statistics, the same under-dispersive and low spread behavior was
observed in the spread/skill plots and rank histograms as was observed for the surface
counterparts of the variables.

Accumulated Precipitation Findings

The highest GSS values for the individual members were seen at the lowest thresholds and at
the earlier forecast lead times. In addition, the ensemble mean has more skill than the envelope
of individual members, but the skill differential between the mean and individual members
decreased as threshold increased.

All individual members produced forecasts that had minimal bias. As precipitation threshold
increased, a general shift toward higher bias values was observed. At the lowest precipitation
thresholds, the ensemble mean typically had smaller low bias values than the individual
members; as the threshold increased, the ensemble mean had a smaller high bias than the
ensemble members. With exception to the longer lead times at the lower precipitation
thresholds, the ensemble mean generally performed better than the individual members.

For evaluating traditional metrics such as GSS and frequency bias, the individual members are
generally clustered closely together showing minimal spread; however, a slight uptick in spread
is observed as forecast lead time increases and as precipitation threshold increases.

Composite Reflectivity Findings

For all evaluated thresholds and individual members, GSS is highest at the earliest lead times,
with an overall decrease in skill throughout the forecast period. Distinct diurnal trends were
noted, with skill decreasing throughout the daytime before rebounding in the overnight hours.

Frequency bias values at all thresholds and for all members are often near 1, indicating
minimally biased forecasts. In general, as threshold increases, there is a small increase in bias
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values. Diurnal variations are noted, with maximums and minimums depending on the threshold
being evaluated, but, overall, lower bias is seen during the morning and early afternoon with
higher biases in the evening and overnight.

Similar to accumulated precipitation, minimal spread was observed for both GSS and frequency
bias. A slight increase in spread is seen with increasing forecast lead time and threshold.

Ensemble Verification Findings

Overall, ensemble spread of traditional metrics was hindered by the minimal impact that
microphysics perturbations had on surface and upper-air temperature, dew point temperature,
and wind speed. However, it is important to note that the MP perturbations did provide valuable
spread to 3-hr precipitation verification, accounting for a large portion of the RMSE by 24 hours
into the forecast. While these results were to be somewhat expected, they illustrate that the MP
perturbations should ideally be used in concert with perturbations to other physics
parameterizations in order to provide adequate spread.

The rank histogram plots mirrored what was found in the spread/skill diagrams, showing a lack
of spread for both surface and upper-air variables (somewhat less so for precipitation
accumulation). A number of rank histograms indicated a slight bias, but there was no
systematic trend when considering all plots. Instead, a consistent under-dispersive signal was
seen, with too many observations falling in the lowest and highest bins.

Reliability plots of surface temperature, dew point temperature, wind speed, and precipitation
accumulation thresholds indicated a general tendency for the ensemble to underestimate
occurrences of low probability events, and overestimate high probability events. Consistent with
an under-dispersive ensemble, these findings match the other verification metrics showing that
insufficient spread hindered the ability of the ensemble to forecast over a wide range of events.

Ensemble vs Control Member Findings

A comparison of precipitation accumulation thresholds for the control and ensemble members
indicated that they all forecast about the same amount of precipitation over the domain,
regardless of season, threshold, or lead time. The ensemble members that contain MP
perturbations are quite skilled at replicating the precipitation from the control, even when the
control lacks skill in replicating observed precipitation from MRMS. Spread in skill/frequency
bias increases with increasing precipitation accumulation threshold and lead time. Direct
comparison of the perturbed ensemble members with the control member provides
complementary information to traditional information available via evaluations versus
observations.
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