Common Community Physics Package (CCPP) Scientific Documentation  Version 2.0
Bibliography
[1]

J. Alpert, M. Kanamitsu, P.M. Caplan, J.G. Sela, G. H. White, and E. Kalnay. Mountain induced gravity wave drag parameterization in the nmc medium-range forecast model. pages 726–733, Baltimore, MD, 1988. Eighth Conf. on Numerical Weather Prediction, Amer. Meteor. Soc.

[2]

T. K. Andersen and J. M. Shepherd. A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. International Journal of Climatology, 34:391–402, 2014.

[3]

A Arakawa and WH Schubert. Interaction of a cumulus cloud ensemble with the large-scale environment, part i. Journal of the Atmospheric Sciences, 31:674–701, 1974.

[4]

A. Arakawa and C.-M. Wu. A unified representation of deep moist convection in numerical modeling of the atmosphere. part i. J. Atmos. Sci., 70:1977–1992, 2013.

[5]

P. G. Baines and T. N. Palmer. Rationale for a new physically based parametrization of sub-grid scale orographic effects. Technical Memorandum 169, European Centre for Medium Range Weather Forecasts, 1990.

[6]

M. Baldwin, R. Treadon, and S. Contorno. Precipitation type prediction using a decision tree approach with nmc's mesoscale eta model. In Preprints. 10th Conf. on Numerical Weather Prediction, pages 30–31, Portland, OR, 1994. Amer. Meteor. Soc.

[7]

Peter Bechtold, Martin Köhler, Thomas Jung, Francisco Doblas-Reyes, Martin Leutbecher, Mark J. Rodwell, Frederic Vitart, and Gianpaolo Balsamo. Advances in simulating atmospheric variability with the ecmwf model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634):1337–1351, 2008.

[8]

A. K. Betts, A. B. Tawfik, and R. L. Desjardins. Revisiting hydrometeorology using cloud and climate observations. J. Hydrometeorol., 18(939-955), 2017.

[9]

P. Bourgouin. A method to determine precipitation types. Weather and Forecasting, 15:583–592, October 2000.

[10]

B.P. Briegleb. Delta-eddington approximation for solar radiation in the ncar community climate model. J. Geophys. Res., 97:7603–7612, 1992.

[11]

JA Businger, JC Wyngaard, Y Izumi, and EF Bradley. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28:181–189, 1971.

[12]

J.-H Chen and S.-J Lin. The remarkable predictability of inter-annual variability of atlantic hurricanes during the past decade. Geophysical Research Letters, 38(L11804):6, 2011.

[13]

J-H. Chen and S-J. Lin. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26(2):380–398, 2013.

[14]

F. Chen, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.-Y. Duan, M. Ek, and A. Betts. Modeling of land-surface evaporation by four schemes and comparison with observations. J. Geophys. Res., 101(D3):7251–7268, 1996.

[15]

F. Chen, Z. Janjic, and K. Mitchell. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the ncep mesoscale eta model. Boundary-Layer Meteorology, 85(3):391–421, 1997.

[16]

M. Chin, R. B. Rood, S-J. Lin, J-F. Muller, and A. M. Thompson. Atmospheric sulfur cycle simulated in the global model gocart: Model description and global properties. J. Geophys. Res., 105(D20):24671–24687, October 2000.

[17]

M.D. Chou and M. J. Suarez. A solar radiation parameterization for atmospheric studies. Technical Memorandum 15, NASA, 1999.

[18]

H.-Y. Chun and J.-J. Baik. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55:3299–3310, 1998.

[19]

S. A. Clough, M. W. Shephard, E. J. Mlawer, J.S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown. Atmospheric radiative transfer modeling: A summary of the aer codes. J. Quant. Spectrosc. Radiat. Transfer, 91:233–244, 2005.

[20]

M. Deng and G. G. Mace. Cirrus cloud microphysical properties and air motion statistics using cloud radar doppler moments: water content, partical size, and sedimentation relationships. Geophysical Research Letters, 35(L17808), 2008.

[21]

J. C. Derber and W.-S. Wu. The use of tovs cloud-cleared radiances in the ncep ssi analysis system. Monthly Weather Review, 126:2287–2299, 1998.

[22]

A. Dethof and E. V. Holm. Ozone assimilation in the era-40 reanalysis project. Quarterly Journal of the Royal Meteorological Society, 130:2851–2872, 2004.

[23]

A.S. Donahue and P.M. Caldwell. Impact of physics parameterization ordering in a global atmosphere model. Journal of Advances in Modeling Earth Systems, (10.1002/2017MS001067):481–499, 2018.

[24]

E.E. Ebert and J.A. Curry. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97:3831–3836, 1992.

[25]

M. B. Ek, K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. Implementation of noah land-surface model advances in the ncep operational mesoscale eta model. J. Geophys. Res., 108(D22):8851, 2003.

[26]

M.P. Ern, P. Preusse, and C.D. Warner. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., (D20103), 2004.

[27]

C. W. Fairall, E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101(C1):1295–1308, 1996.

[28]

K. L. Findell, A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello, Jr. Shevliakova, and E. Shevliakova. The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications, 8(989), 2017.

[29]

J. M. Fritsch and C. F. Chappell. Numerical prediction of convectively driven mesoscale pressure systems. part i: Convective parameterization. Journal of the Atmospheric Sciences, 37(8):1722–1733, 1980.

[30]

D. C. Fritts and D.D. Nastrom. Sources of mesoscale variability of gravity waves. part ii: frontal, convective, and jet stream excitation. J. Atmos. Sci., 49:111–127, 1980.

[31]

D. C. Fritts. Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22:275–308, 1984.

[32]

Q. Fu, P. Yang, and W. B. Sun. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11:2223–2237, 1998.

[33]

Q. Fu. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9:2058–2082, 1996.

[34]

M. Gehne, T. Hamill, G. Bates, P. Pegion, and W. Kolczynski. Land-surface parameter and state perturbations in the global ensemble forecast system. Monthly Weather Review, submitted.

[35]

G.A. Grell and S.R. Freitas. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14:5233–5250, 2014.

[36]

Georg A. Grell. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3):764–787, 2016/03/25 1993.

[37]

B.P. Guillod, B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 6(6443), 2015.

[38]

Jongil Han and Hua-Lu Pan. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Monthly Weather Review, 134(2):664–674, 2006.

[39]

Jongil Han and Hua-Lu Pan. Revision of convection and vertical diffusion schemes in the ncep global forecast system. Weather and Forecasting, 26(4):520–533, 2016/03/25 2011.

[40]

Jongil Han, Marcin L. Witek, Joao Teixeira, Ruiyu Sun, Hua-Lu Pan, Jennifer K. Fletcher, and Christopher S. Bretherton. Implementation in the ncep gfs of a hybrid eddy-diffusivity mass-flux (edmf) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting, 2015.

[41]

J. Han, W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang. Updates in the ncep gfs cumulus convective schemes with scale and aerosol awareness. Weather and Forecasting, 32:2005–2017, 2017.

[42]

M. Hess, P. Koepke, and I. Schult. Optical properties of aerosols and clouds: The software package opac. Bull. Am. Meteor. Soc., 79:831–844, 1998.

[43]

A. J. Heymsfield and L.J. Donner. A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47(15):1865–1877, 1990.

[44]

A.J. Heymsfield and G. M. McFarquhar. High albedos of cirrus in the tropical pacific warm pool: Microphysical interpretations from cepex and from kwajalein, marshall islands. J. Atmos. Sci., 53:2424–2451, 1996.

[45]

A. L. Hirsch, A.J. Pitman, J. Kala, R. Lorenz, and M. G. Donat. Modulation of land-use change impacts on temperature extremes via land-atmosphere coupling over australia. Earth Interactions, 19(12):1–24, 2015.

[46]

Song-You Hong and Hua-Lu Pan. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10):2322–2339, 1996.

[47]

S-Y. Hong, J. Dudhia, and S-H. Chen. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132:103–120, 2004.

[48]

Y. Hou, S. Moorthi, and K. Campana. Parameterization of solar radiation transfer. office note 441, NCEP, 2002.

[49]

H. Hsu, M.-H. Lo, B. P. Guillod, D. G. Miralles, and S. Kumar. Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. J. Geophys. Res. Atmos., 122:6319–6328, 2017.

[50]

Y.X. Hu and K. Stamnes. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6:728–742, April 1993.

[51]

M.J. Iacono, E.J. Mlawer, S. A. Clough, and J.-J. Morcrette. Impact of an improved longwave radiation model, rrtm, on the energy budget and thermodynamic properties of the ncar community climate model, ccm3. J. Geophys. Res., 105:14873–14890, 2000.

[52]

M.J. Iacono, J.S. Delamere, E.J. Mlawer, M. W. Shephard, S. A. Clough, and W.D. Collins. Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer models. J. Geophys. Res., 113, 2008.

[53]

D. R. Jackson and R. Saunders. Ozone data assimilation: preliminary system. Forecasting Research Technical Report 394, Met Office, 2002.

[54]

V. O. John and S. A. Buehler. The impact of ozone lines on amsu-b radiances. Geophysical Research Letters, 31, 2004.

[55]

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. The delta-eddington approximation for radiative flux transfer. Journal of the Atmospheric Sciences, 33:2452–2459, 1976.

[56]

J.R. Key. Streamer user's guide.

[57]

Y.-J. Kim and A. Arakawa. Improvement of orographic gravity wave parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52:1875–1902, 1995.

[58]

Y.-J. Kim, S. D. Eckermann, and H.-Y. Chun. An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmosphere-Ocean, 41(1):65–98, 2003.

[59]

V. Koren, J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. Baker. A parameterization of snowpack and frozen ground intended for ncep weather and climate models. J. Geophys. Res., 104(D16):19569–19585, 1999.

[60]

R. D. Koster, Y. Chang, and S. D. Schubert. A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27:9290–9301, 2014.

[61]

S.K. Krueger, Q. Fu, K. N. Liou, and H-N. S. Chin. Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34:281–287, January 1995.

[62]

Xu Li and John Derber. Near sea surface temperatures (nsst) analysis in ncep gfs.

[63]

Xu Li. The development of the nsst within the ncep gfs/cfs.

[64]

K.-S. S. Lim. Investigation of aerosol indirect effects on simulated moist convections.. PhD thesis, Yonsei University, Seoul, South Korea, 2011.

[65]

Y.-L. Lin, R. D. Farley, and H. D. Orville. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22:1065–1092, 1983.

[66]

S-J. Lin, W. C. Chao, Y. C. Sud, and G. K. Walker. A class of the van leer-type transport schemes and its application to the moisture transport in a general circulation model. Monthly Weather Review, 122:1575–1593, 1994.

[67]

R. S. Lindzen. Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86:9707–9714, 1981.

[68]

K. N. Liou. A numerical experiment on chandrasekhar's discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. Journal of the Atmospheric Sciences, 30:1303–1326, 1973.

[69]

AP Lock, AR Brown, MR Bush, GM Martin, and RNB Smith. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128:3187–3199, 2000.

[70]

P.J. Long. An general unified similarity theory for the calculation of turbulent fluxes in the numerical weather prediction models for unstable condition. Office Note 302, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1984.

[71]

P.J. Long. An economical and compatible scheme for parameterizing the stable surface layer in the medium-range forecast model. Office Note 321, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1986.

[72]

S.J. Lord, H.E. Willoughby, and J.M. Piotrowicz. Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41(19):2836–2848, October 1984.

[73]

F. Lott and M. J. Miller. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quarterly Journal of the Royal Meteorological Society, 123:101–127, 1997.

[74]

JF Louis. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17:187–202, 1979.

[75]

M. K. MacVean and P. J. Mason. Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. Journal of the Atmospheric Sciences, 47(8):1012–1030, 1990.

[76]

J. P. McCormack, S. D. Eckermann, D. E. Siskind, and T. J. McGee. Chem2d-opp: A new linearized gas-phase ozone photochemistry parameterization for high-altitude nwp and climate models. Atmos. Chem. Phys., 6:4943–4972, 2006.

[77]

J.P. McCormack, K.W. Hoppel, and D.E. Siskind. Parameterization of middle atmospheric water vapor photochemistry for high-altitude nwp and data assimilation. Atmos. Chem. Phys., 8:7519–7532, 2008.

[78]

J. Milovac, K. Warrach-Sagi, A. Behrendt, F. Spath, J. Ingwersen, and V. Wulfmeryer. Investigation of pbl schemes combining the wrf model simulations with scanning waver vapor differential absorption lidar measurements. J. Geophys. Res. Atmos., 121:624–649, 2016.

[79]

K. Miyakoda and J. Sirutis. Manual of the E-physics. Princeton University Press, 1986.

[80]

E.J. Mlawer, S.J. Taubman, P.D. Brown, M. J. Iacono, and S. A. Clough. Radiative transfer for inhomogenerous atmospheres: Rrtm, a validated correlated-k model for the longwave. J. Geophys. Res., 102(16663-16682), 1997.

[81]

D. PaiMazumder and J. M. Done. Potential predictability sources of the 2012 u.s. drought in observations and a regional model ensemble. J. Geophys. Res. Atmos., 121:12581–12592, 2016.

[82]

T. N. Palmer, G. J. Shutts, and R. Swinbank. Alleviation of a systematic westerly bias in circulation and numerical weather prediction model through an orographic gravity wave drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112:1001–1039, 1986.

[83]

H. L. Pan and W.-S. Wu. Implementing a mass flux convection parameterization package for the nmc medium-range forecast model. NMC Office Note, No. 409, page 40pp, 1995.

[84]

C.A. Paulson and J.J. Simpson. The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86(C11):2156–2202, 1981.

[85]

C. D. Peters-Lidard, M. S. Zion, and E. F. Wood. A soil-vegetation-atmosphere transfer sheme for modeling spatially variable water and energy balance processes. J. Geophys. Res., 102(D4):4303–4324, 1997.

[86]

C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55:1209–1224, 1998.

[87]

R. T. Pierrehumbert. An essay on the parameterization of orographic wave drag. observation, theory, and modelling of orographic effects, 1986.

[88]

J. Ramer. An empirical technique for diagnosing precipitation type from model output. In Preprints. Fifth Int. Conf. on Aviation Weather Systems, pages 227–230, Vienna, VA, 1993. Amer. Meteor. Soc.

[89]

L. P. Riishojgaard. On four-dimensional variational assimilation of ozone data in weather-prediction models. Quarterly Journal of the Royal Meteorological Society, 122:1545–1571, 1996.

[90]

R. R. Rogers. A short course in cloud physics, 1979.

[91]

S.A. Rutledge and P.V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. viii: A model for the 'seeder-feeder' process in warm-frontal rainbands. J. Atmos. Sci., 40:1185–1206, 1983.

[92]

S.A. Rutledge and P.V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. xii: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41(20):2949–2972, 1984.

[93]

M. Sato, J.E. Hansan, M. P. McCormick, and J. B. Pollack. Stratospheric aerosol optical depth, 1985-1990. J. Geophys. Res., 98(D12):22987–22994, 1993.

[94]

T.J. Schuur, H.-S. Park, A.V. Ryzhkov, and H.D. Reeves. Classification of precipitation types during transitional winter weather using the ruc model and polarimetric radar retrievals. Journal of Applied Meteorology and Climatology, 51:763–779, 2012.

[95]

A. Pier Siebesma, Pedro M. M. Soares, and Joao Teixeira. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64:1230–1248, 2007.

[96]

P. M. M. Soares, P. M. A. Miranda, A. P. Siebesma, and J. Teixeira. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quarterly Journal of the Royal Meteorological Society, 130(604):3365–3383, 2004.

[97]

A.V. Soloviev and N.V. Vershinsky. The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep Sea Research Part A. Oceanographic Research Papers, 29(12):1437–1449, 1982.

[98]

H. Sundqvist, E. Berge, and J.E. Kristjansson. Condensation and cloud studies with a mesoscale numerical weather prediction model. Monthly Weather Review, 117:1641–1657, 1989.

[99]

H. Sundqvist. Physically-based modeling and simulation of climate and climatic changes, Part I, chapter Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation, pages 433–461. M. E. Schlesinger, Ed., Reidel, 1988.

[100]

IB Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2):129–148, 1986.

[101]

A. Untch, A. J. Simmons, M. Hortal, and C. Jakob. Increased stratospheric resolution in the ecmwf forecasting system. In Proceedings of the SODA Workshop, pages 45–52. Netherlands, 1999.

[102]

M.S. Wandishin, M. E. Baldwin, S.L. Mullen, and J.V. Cortinas Jr. Short-range ensemble forecasts of precipitation type. Weather and Forecasting, 20:609–626, August 2005.

[103]

M. Winton. A reformulated three-layer sea ice model. J. Atmos. Oceanic Tech., 17:525–531, 2000.

[104]

World Meteorological Organization. WMO greenhouse gas bulletin, number 13, October 2017 2017.

[105]

K-M. Xu and D. A. Randall. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21):3084, 3102 1996.

[106]

W. G. Zdunkowski, R. M. Welch, and G. Korb. An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Beitr. Phys. Atmos., 53:147–166, 1980.

[107]

X. Zeng and A. Beljaars. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophysical Research Letters, 32(14):1–4, 2005.

[108]

X. Zeng and R.E. Dickinson. Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11:537–550, 1998.

[109]

X. Zeng, M. Zhao, and R.E. Dickinson. Intercomparison of bulk aerodynamic algorithm for the comutation of sea surface fluxes using toga coare and tao data. J. Climate, 11:2628–2644, 1998.

[110]

Guang J. Zhang and Xiaoqing Wu. Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. Journal of the Atmospheric Sciences, 60(9):1120–1139, 2003.

[111]

Q. Zhao and F.H. Carr. A prognostic cloud scheme for operational nwp models. Monthly Weather Review, 125:1931–1953, 1997.

[112]

W. Zheng, H. Wei, J. Meng, M. Ek, K. Mitchell, J. Derber, X. Zeng, and Z. Wang. Improvement of land surface skin temperature in ncep operational nwp models and its impact on satellite data assimilation. Omaha, Nebraska, 2009. The 23rd Conference on Weather Analysis and Forecasting (WAF)/19th Conference on Numerical Weather Prediction(NWP).

[113]

W. Zheng, H. Wei, Z. Wang, X. Zeng, J. Meng, M. Ek, K. Mitchell, and J. Derber. Improvement of daytime land surface skin temperature over arid regions in the ncep gfs model and its impact on satellite data assimilation. J. Geophys. Res., 117(D06117), 2012.

[114]

W. Zheng, M. Ek, K. Mitchell, H. Wei, and J. Meng. Improving the stable surface layer in the ncep global forecast system. Monthly Weather Review, 145:3969–3987, 2017.