Application of a WRF mesoscale data assimilation system to shortrange thunderstorm forecasts

HWT/DTC Collaboration Meeting

Dustan M. Wheatley CIMMS/NSSL

David J. Stensrud and Michael C. Coniglio

Jidong Gao

Center for Analysis and Prediction of Storms University of Oklahoma

CAPS

Goals

- Near-term: Evaluate the application of an EnKF mesoscale analysis/forecast system to predicting severe weather events
 - Ability to produce realistic mesoscale structures (e.g., cold pools)
 - Impact on environmental characteristics such as CAPE, shear, etc

Goals

- Long-term: Evaluate the application of convection-allowing forecasts launched from mesoscale ensemble to severe weather events
 - Need inhomogeneous environments?
 - How can we best optimize computer resources?
 - Warn-on-forecast driven

WRF Mesoscale Ensemble System

• WRF-ARW V2.2

- Eastern two-thirds of CONUS
- 20-km horizontal grid spacing; 35 vertical levels
- Mean initial and boundary conditions from the NAM forecast cycle starting at 12Z

WRF mesoscale ensemble system (cont.)

- 30-member ensemble
 - IC/BC perturbations from WRF-Var (Torn et al. 2006)
 - Random, filtered soil moisture perturbations
 - Physics diversity
 - Microphysics: WSM6, Thompson
 - <u>Cumulus:</u> Kain-Fritsch, Betts-Miller-Janjic, Grell-Devenyi
 - <u>Surface layer</u>: Similarity theory (MM5), Similarity theory (Eta)
 - <u>PBL:</u> YSU, MYJ, NCEP GFS
 - Shortwave radiation: Dudhia, Goddard

Mesoscale data assimilation

• p (land-surface altimeter), T, T_d, u, v

Data Assimilation Research Testbed (DART)

- Ensemble Kalman filter (EnKF) approach
- See http://www.image.ucar.edu/DAReS/DART
- Observation platforms...

Design of experiments

 Resultant analyses and forecasts compared against a pure ensemble forecast (with no data assimilation)

0000 UTC 13 June 2009

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Associated cold pools reproduced in ensemble mean 2-m temperature

0000 UTC 6 June 2009 CAPE / 0-6-km shear

CAPE axis improved in Assim

0200 UTC 25 June 2009 Significant Tornado Parameter

Values improved in Assim

Storm-scale experiments- How important is horizontal environmental variability on convective scale?

Cooper et al. (1994)

4-5 May 2007

Mesoscale Ensemble

 Assimilate surface observations from 1300 4 May to 0230 UTC 5 May (theta, dewpoint, u, v)

Convection-allowing ensemble

- ARPS model
 - 1 km grid spacing, 47 vertical levels to 20 km
 - LFO microphysics
 - 1-h forecast starting at 0230 UTC
- Two sets of initial conditions

- SND 30 vertical soundings from mesoscale ensemble
- <u>3D</u> 30 three-dimensional fields from mesoscale ensemble
- Radar data assimilation
 - ARPS 3DVAR scheme (Gao et al. 2004) and cloud analysis
 - Reflectivity and radial velocity data from 6 nearby radars at 0230 UTC
 - No cycling

10 minutes

20 minutes

30 minutes

45 minutes

60 minutes

SND ensemble forecast initialized with radar data

F

SND 1 km

0

20 68 116 164 (km)

3D

Preliminary Conclusions

- Uncertainty not just the from microphysics!
- Need to use three-dimensional initial/boundary conditions for real data cases or storm evolution may be incorrect

Plans

- Run mesoscale ensemble in analysis & forecast mode in Spring 2010 for V2
- Continue collaboration with CAPS to explore/evaluate methods of sfc & radar data assimilation
- Collaborate with NCAR on proposed Front-Range Convection experiment (D. Dowell, G. Romine)