

HWT Experimental Forecasting Program Plans for 2010 (and beyond)

Steven Weiss and Russell Schneider Jack Kain and Mike Coniglio

HWT-DTC Collaboration Meeting

Boulder, CO

September 25, 2009

HWT Plans for 2010

- Use proven template of bringing together research scientists, NWP model developers, and forecasters to examine topics of mutual interest
- Needs and requirements of NSSL and SPC will modulate design and execution
 - NSSL primary focus on VORTEX2 field program
 - All hands on deck!
 - SPC increasingly focused on thunderstorm impacts on aviation
 - NWS and UCAR review panel directives
 - Partner with Aviation Weather Center utilizing multi-NCEP Center resources to improve thunderstorm forecasts for aviation

The short-term convective forecast needs of the aviation community are consistent with those of the overall user community

 Higher temporal/spatial resolution thunderstorm and severe thunderstorm forecasts are needed at more frequent time intervals (especially 0-12 hrs)

HWT Plans for 2010

Some changes will likely occur

- Aviation weather component requires later timetable than typical Spring Experiments
 - Maximum thunderstorm frequency in northeast corridor starts in June
 - But, summer vacation of SPC staff also increases in June!
 - Experiment from mid/late May into mid/late June (4 week period)
- More visiting scientists and forecasters will come from aviation community
 - AWC, WFOs in northeast states, CWSUs, and FAA
- A much more focused experiment compared to 2009
 - Emphasis on blending smaller number of 00z model runs with a few short-term "update" model runs
 - Less model data to ingest, utilize, evaluate, and archive
 - 2008 Model data: 30 GB/Day 2009 Model data: 100 GB/day!

HWT Plans for 2010

- Some things will likely stay the same:
 - Daily activities include real-time experimental forecasts and model evaluation
 - Continue probabilistic severe storm forecasts (Team 1)
 - Add thunderstorm aviation impact forecasts (Team 2)
 - Explore complementary use of deterministic WRF models and SSEF in forecast decision-making
 - Examine impact of radar assimilation in short-term model forecasts (especially "update" runs)
 - Renew emphasis on "why" WRF models produce storms where they do
 - Examination of model pre-convective environment and impact of "parent" model ICs
 - Again, the need to balance workload with available resources will require focusing on fewer models than in 2009

Initial HWT NWP Plans for 2010

- 00z "Next-day" model runs
 - EMC 4 km NMM and NSSL 4 km ARW (year-round)
 - CAPS 20 member 4 km SSEF and 1 km ARW
 - Used for initial morning experimental forecasts
- Short-term update model forecasts
 - Hourly 3 km HRRR
 - CAPS 4 km WRF V2 support runs at 12, 15, and 18z (09z?)
 - Used in short-term forecast support (0-12h) for periodic updating of experimental forecasts
- Radar assimilation sensitivity testing
 - DTC objective verification of HRRR and CAPS Cn and C0 runs

Examples of Possible Aviation Applications of Ensemble Output

All Levels Gridded Flight Composite (20 km Grid) January 1, 2004 to December 31, 2008

Field= PLANEPCT Vcord= NONE Level= 0 Time= 080101/0700A000 [NOAA/NWS/Storm Prediction Center]

Gridded Flight Composites (20 km Grid) at 00 UTC January 1, 2004 to December 31, 2008

Snapshot probability of an aircraft inside the 20 km (AWIPS 215) grid box

SREF Guidance 15 UTC 10 June 2008 F009 valid at 00 UTC 11 June 2008

SREF Impact Guidance 15 UTC 10 June 2008 F009 valid at 00 UTC 11 June 2008

Joint probabilities - calibrated thunderstorm and aircraft position

SSEF Convective Mode Linear Detection

- Determine contiguous simulated reflectivity areas exceeding 35 dbZ
- Estimate mean length-to-width ratio of the contiguous area; search for ratios > 5:1
- Flag grid point if the length exceeds:
 - 50 miles
 - 100 miles
 - 200 miles

Probability Linear Mode Exceeding 200 miles (Squall Line Detection)

~SSEF__POST 080418/0000V024 PROBABILITY LINEAR MODE WITHIN 25 MILES OF THE GRID POINT (dbZ>=35;Aspect>=5;Length>=200 mi)

Probability Linear Mode Exceeding 200 miles (Squall Line Detection)

~SSEF__POST 080418/0200V026 PROBABILITY LINEAR MODE WITHIN 25 MILES OF THE GRID POINT (dbZ>=35;Aspect>=5;Lengtb>=200 mi)

Linear Convective Mode: Impacts

Image provided by Jon Racy

A General Vision for HWT Beyond 2010

- Continue Spring Forecasting Experiment (4 week duration)
- Utilize the HWT as NCEP and NWS Resource
 - Partner with other NCEP Centers to examine a variety of convective weather impacts, such as
 - HPC: convective heavy rain and flash flooding
 - OPC: offshore thunderstorms over the Gulf Stream
 - TPC: tropical cyclone tornadoes
- Explore other thunderstorm analysis & prediction challenges in week-long HWT workshops with science and operational communities
 - Invited presentations, discussions, and collaboration planning
 - Include one day for real-time forecasting exercise or DRT case
 - Sample SPC topic areas (NSSL with have others)
 - Dry lightning/fire weather in west
 - MCS severe storms and heavy rain/flooding (simultaneous or transition)
 - Cool season southeast US severe