

NOAA Hurricane Forecast Improvement Project

Bob Gall

- Unify the NOAA effort
- Provide the basis for NOAA co-leading with NSF, Navy and others a national effort to:
 - Define and coordinate National Hurricane Research Agenda
 - Apply new science and technology to the hurricane and storm surge warning and forecast problem
- Significantly improve guidance to NHC for hurricane track and intensity forecasts

Significantly improve NOAA's forecast services for tropical storms and hurricanes through improved hurricane forecast science and technology

- NOAA has been charged by OMB, and Congress, to substantially improve NOAA's Hurricane Forecast and Warning Performance
 - 20% within 5 years
 - 50% overall goal
- Specific 10 year goals:
 - Reduce average track error by 50% for Days 1 through 5.
 - Reduce average intensity error by 50% for Days 1 through 5.
 - Increase the probability of detection (POD) for rapid intensity change to 90% at Day 1 decreasing linearly to 60% at Day 5, and decrease the false alarm ratio (FAR) for rapid intensity change to 10% for Day 1 increasing linearly to 30% at Day 5.
 - Extend the lead time for hurricane forecasts out to Day 7.

- A National Hurricane Forecast System (NHFS) focused on providing accurate and reliable forecast guidance to NHC out to 5-7 days
 - Multi-component global and storm scale atmospheric, wave and oceanic modeling system -- to accurately and reliably model both the hurricane and intensity and the environmental controls on storm evolution over time
 - Managed ensemble diversity to:
 - Provide 'Most Probable" forecast
 - Quantify, bound and reduce forecast uncertainty
 - Optimal use of existing and planned observing systems
 - Advanced forecast techniques for forecaster use

High Level Performance/Project Schedule

- 1. Global Modeling Development Team
- 2. Regional Model Development Team
- 3. Hurricane Data Assimilation Team
- 4. Non-hydro Meso. Model Physics Team
- 5. Global Model Physics Team
- 6. Verification Team
- 7. Model Diagnostics Team
- 8. Post Processing / Applic. Develop. Team
- 9. Ensemble Systems Development Team
- 10. Hurricane Observations Team
- 11. Coupled Ocean/Wave model Team

Stan Benjamin (ESRL) Morris Bender (GFDL) Steve Lord (EMC) Young Kwon (EMC) John Brown (ESRL) Tim Marchok (GFDL) Mark DeMaria (NESDIS) Ed Rappaport (NHC) Carolyn Reynolds (NRL) Sim Aberson (HRD Nick Shay (RSMAS)

Hendrik Tolman (EMC)

- Global Modeling System
- "hurricane" data assimilation
 - Technical Approach
 - Data
- Physics Package/Resolution
- Ocean Interaction
- Ensemble System
 - Global
 - Regional
- Business Case Development

Organization HFIP Missions

• AOML

Stream 2 regional model and data assimilation development. Physics package development

• *EMC*

Stream 1 regional and global model development. Physics package development. HWRF operational system maintenance.

• ESRL

Stream 2 global model, ensemble system development. Physics package development

• NRL

Stream 2 Ensemble system development, physics package development.

• GFDL

Stream 2 global model development. Stream 1 ocean coupling

- DTC HFIP research code repository maintenance. Verification system development.
- NHC

Lead post processing development.

• AOC

HFIP related aircraft observations

- URI
 Stream 1 ocean coupling
- NESDIS/CIRA
 Verification toolkit development. Ensemble post processing applications

Two Stream Approach

HFIP has a two stream development plan which includes:

- <u>Stream 1</u>: Development and maintenance of the operational hurricane model system.
- <u>Stream 2</u>: Development of a Demonstration System that will go beyond what is currently available operationally using various computer resources including the recently acquired HFIP HPCC computers at Boulder and Gaithersburg.

Two Stream Development

- Stream 1: Operational system
 - Current plan outlined by the operational centers
 - Uses currently projected operational computing capability
 - (the sure thing)
- Stream 2: Development
 - Assumes possibility of acquiring 3-5 times the computing beyond what is currently projected.
 - Development in this stream is to demonstrate added value of increased computing in operations.
 - (possible step function improvements)
- Stream 2: Demonstration System: We will run a demonstration forecast system with higher resolution/more ensemble members than is available in operations.
 - Using dedicated HFIP computers (ESRL, TACC, Oak Ridge)
 - System would be improved each year based on new development and results from the previous season.
 - Would be run in real time -- results made available to NHC.
 - Transition of components of demo system to operations when benefits are verified

- HFIP will create a major dedicated computer resource where real-time (not operational) forecasts will be conducted each hurricane season.
 - Other times of the year this system will be available for HFIP development
- Since the system is dedicated we will be able to run forecasts that will not be possible for several on the operational systems
 - Higher resolution
 - More ensemble members
 - More elaborate physics parameterizations
 - More elaborate data assimilation systems

Hurricane Forecast System Comparisons: 2009 Season

Operational Model Suite	Demonstration System
 Global model: GFS T382 (~35km), 64 layers 	Global Model: FIM 15 km, 64 layers
 Global ensemble: GFS T126 (100km), 28 layers, 20 members (40 with NAEFS); FIM will be tested at 60km when ported 	 Global ensemble: FIM 20km, 64 layers, 15 members (depends on available computing)
 Regional model: HWRF 9km, 69 levels, coupled ocean (POM) 	 Regional Model: ARW 1km, 34 layers, 1-D ocean
 Regional Ensemble: 35-45km, 28-51 layers, multi-member ensemble (ARW, NMM, RSM, ETA) 21 members (non- hurricane model fixed domain) NHC Consensus Ensemble: Track (GFSI, EGRI, NGPI, GFMI, HWFI); Intensity (DHSP, LGEM, GHMI, HWFI, 	 Regional Ensemble: 5-10km, up to 43 layers, multi-member ensemble (ARW, HWRF, COAMPS-TC, GFDL, MM5), 5 members
GFNI) • Data assimilation Global: GSI	 Data assimilation global: GSI
 Data assimilation, Global: GSI Data assimilation regional: GSI 	 Data assimilation regional: EnsKF 12 (with Tail Doppler data when available)

Transition to Operations Implementation

- Transition to operations is accomplished through a movement of functionality from Development stream 2 to Stream 1
- Transition is dependent upon
 - Expected impact on operational stream 1 forecast performance
 - Available operational Computing
- Experimental operational demonstration of new functionality is maintained in Stream 2.

Schedule Development and Technology Transfer Plan

NOAA HFIP Expected Out year Budgets

- Total Expected HFIP Budget in FY10 FY13
 - \$3M PAC for HPC
 - \$20M ORF (Includes \$6M in OAR Base)
- Additional research/operational computing in NOAA-wide HPC Initiative
- NOAA budget has assured that \$13M in FY10 President's Budget

NWS Budget Breakdown Participating Organization

	AOML	EMC	ESRL	GFDL	NRL	NCAR/UNIV	NHC	AOC	PO	MDL	NESDIS	NOS/CSDL	Total
HWRF/SLOSH O&M	0	740	0	0	0	0	150	0	0	150	0	0	1040
NAEFS Transition	0	200	200	0	0	0	0	0	0	0	0	0	400
Total	0	940	200	0	0	0	150	0	0	150	0	0	1440
Stream 2													
Team 1 Global Model	0	130	200	100	100	0	0	0	0	0	0	0	530
Team 2 Regional Model	250	300	0	0	100	200	0	0	0	0	0	0	850
Real Time Evaluation	0	0	0	0	0	0	180	0	0	0	0	0	180
Team 9 Ensembles	175	200	150	0	250	0	0	0	0	0	0	0	775
Development code repository maint.	0	0	0	0	0	500	0	0	0	0	0	0	500
Demo system	200	180	200	0	150	0	0	0	0	0	0	0	730
Total	625	810	550	100	600	700	180	0	0	0	0	0	3565
General development													
Team 3 Assimilation	270	290	100	0	0	0	0	0	0	0	300	0	960
Team 4 Non-Hydro Phy	240	150	100	130	150	0	0	0	0	0	0	0	770
Team 5 Global Physics	0	150	180	100	100	0	0	0	0	0	0	0	530
Team 6 Verification	0	0	0	70	0	100	0	0	0	0	50	0	220
Team 7 Model Diag	200	0	0	0	0	0	0	0	0	0	100	0	300
Team 8 PPAD	135	0	0	0	0	0	500	0	0	0	0	0	635
Team 10 Obs	0	0	0	0	0	0	0	1500	0	0	0	0	1500
Team 11 Coupled Ocn (including Storm Surge)	150	1000	0	0	150	0	0	0	0	0	0	500	1800
Other													
Carribean RAOBS/fixig Gulf data bouys	0	0	0	0	0	0	0	0	850	0	0	0	850
DTC	0	0	200	0	0	400	0	0	0	0	0	0	600
Software Engineering	0	0	0	0	0	0	0	0	500	0	0	0	500
Hi res test	0	0	0	0	0	300	0	0	0	0	0	0	300
Hi res test	0	0	0	0	0	200	0	0	0	0	0	0	200
Project Office	0	0	0	0	0	0	0	0	650	0	0	0	650
NUOPC	0	0	0	0	0	0	0	0	520	0	0	0	520
Total	995	1590	580	300	400	1000	500	1500	2520	0	450	500	10335
Grand Total	1620	3340	1330	400	1000	1700	830	1500	2520	150	450	500	15340
Component before taxes in blue	4040												
AOML base budget	6000	0	0	0	0	0	0	0	0	0	0	0	6000
HFIP Computing	0	0	0	0	0	0	0	0	5700	0	0	0	5700
HFIP total	7620	3340	1330	400	1000	1700	830	1500	8220	150	450	500	27040

NO ATMOSPHER

Торіс	Budget
Stream 1: HWRF operations and maintenance	\$1.4M
Stream 2: Global, regional models and their ensembles for the	\$3.1M
Demonstration System	
General development (data assimilation, physics package,	\$3.4M
model products, and verification development)	
Observations (Caribbean raobs, expendables, flight hours)	\$2.4M
Ocean coupling including storm surge	\$1.8M
HFIP code repository maintenance/community interactions	\$1.4M
Software engineering for demo system	\$0.6M
Project office	\$1.2M
Total	\$15.3M