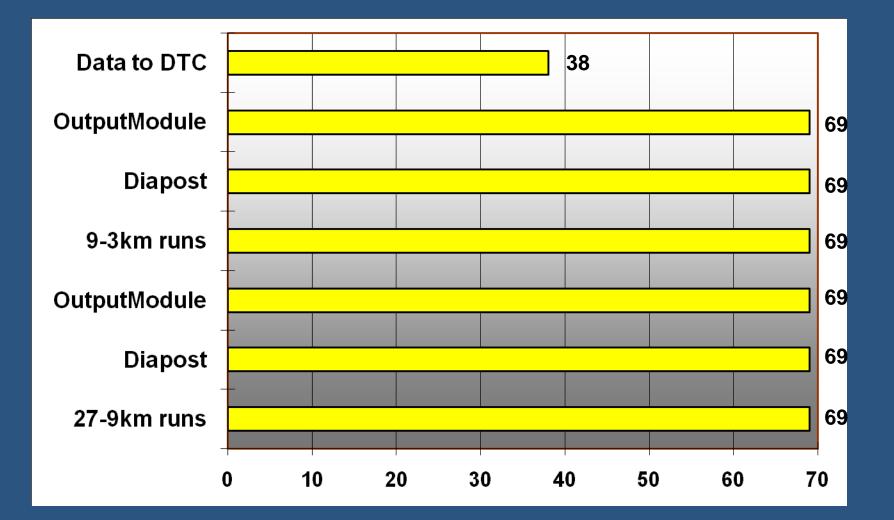
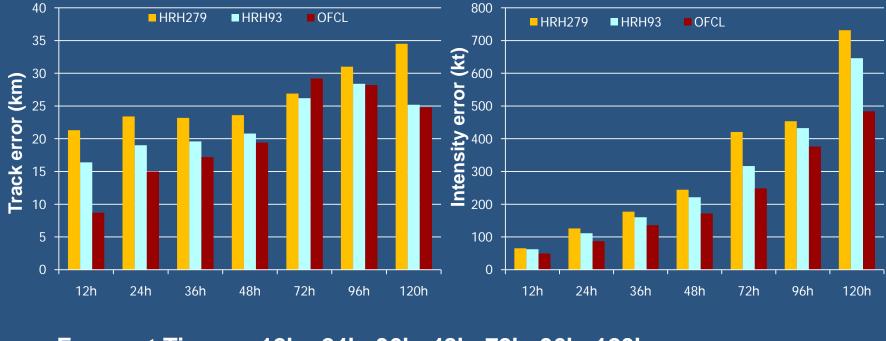

High Resolution Hurricane Test at AOML

----Lessons we learned from 69 forecast cases

Xuejin Zhang (AOML/HRD, CIMAS) Kevin Yeh (AOML/HRD, CIMAS) Sundararaman Gopalakrishnan (AOML/HRD) **Collaborators:** Sim Aberson (AOML/HRD) Robert Rogers (AOML/HRD) Thiago Quirino (AOML/HRD, CIMAS) Frank Marks (AOML/HRD) Acknowledge: Jian-Wen Bao (ESRL), Ligia Bernardet (DTC), Tim Marchok (GFDL), Louisa Nance (NCAR/DTC) ESRL/GSD/HPCS, NCAR/DTC


HWRF-x model system


Model Configuration

- WRF NMM 3.0
- Domains
 - Horizontal
 - 27KM (~55° ×55 °)/9KM (~5° ×5 °)
 - 9KM (~55° ×55 °)/3KM (~5° ×5 °)
 - Vertical
 - 42 full levels with model top at 50 mb
- Physics
 - Cumulus: Simplified Arakawa-Schubert (27KM and 9KM domains)
 - Microphysics: Ferrier
 - PBL: GFS scheme
 - Surface Layer: GFDL surface scheme
 - Land Surface: NCEP LSM
 - Radiation: RRTM (LW) / Dudhia (SW)
- Ocean
 - Constant SST from GFDL
- Lateral Boundary Conditions
 - GFS forecast (v2007)
- Initial conditions
 - GFDL initial condition for SST and atmosphere
 - GFS initial condition for land surface model

HRH Test Run Status

HRH Test Tracks and Intensities

Forecast Time:	12h	24h	36h	48h	72h	96h	120h
# Cases:	63	62	60	57	49	39	28

Resource Used for running HRH test

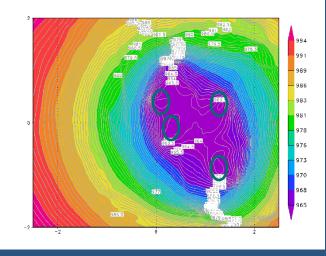
	Output Frequency		Disk Space			CPU resource		
	D01	D02	Precip	WPS	ATMOS	DIAPOST	Model	DIAPOST
27-9km	3hr	30min	3min	6.5Gb	16.1Gb	16.5Gb	128CPUs ~2hr	~10min
9-3km	3hr	30min	3min	24.1Gb	80.2Gb	47.7Gb	256CPUs ~6hour	1.5hr

Total Disk Space: ~191 GB per case X 69 = ~13.2 Tb Total CPU hour: ~1800 CPU hours X 69 = 124,200 CPU hours Model Output Data: ~76.6 Gb X 69 = 5.3 Tb

Diagnostic Post-processor (DIAPOST)

Post-processing

- Motivation
 - Process hi-res model output with sufficient efficiency
 - Analyze model performance on native grids to minimize the interpolation
- Function
 - Output model data at original σ-p levels on rotated lat-lon grid for model performance analysis
 - Produce data at pressure/height levels on rotated/standard lat-lon grid
 - Generate special data sets for evaluation & verification (ATCF track verification, DTC hi-res hurricane test data...)
 - Produce special hurricane diagrams for demonstration (Multiple tracks, wind swath, rain swath ...)
 - Generate GrADS environment for analysis and display

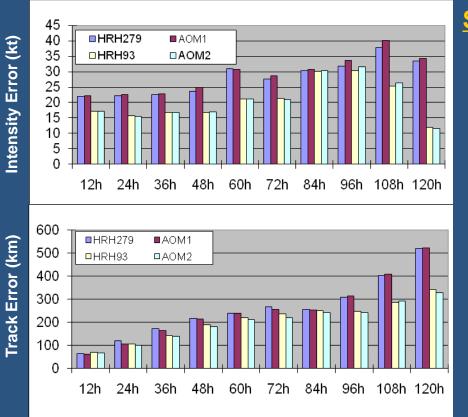

Diagnostic package

- Vortex-scale analysis and diagnosis
 - symmetric structure of tangential, radial, vertical wind
 - radial distribution
 - vertical structure
 - time evolution
- Convective-scale analysis and diagnosis
 - statistics of vertical motion, mass flux
 - time-height vertical profiles
 - vertical structure of distributions
 - time evolution of distributions

Implementation of moving nest algorithm

Motivation

- Multiple vortices within storm eye
 - Multiple low centers due to terrain interaction
 - Multiple vortices due to high resolution
- Disorganized storms
 - Invest cases
 - Storms during/after passing land (Island or Peninsula)
- Solution
 - Centroid Method

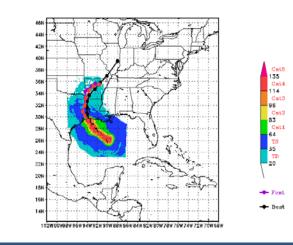


Multiple Vortices

• Issue

- Very weak and disorganized storm
- Topography issue

Tracker Comparisons



Forecast time

Some large differences

<u>RITA 2005092300</u>

HR93 10. 24. 44. 100. **179. 342.** 9999. 9999. 9999. 9999. AOM2 10. 24. 51. 100. **115. 214.** 9999. 9999. 9999. 9999.

<u>Summary:</u>

•Tracker developed at AOML is consistent to GFDL/DTC tracker

Tracker has more uncertainty
over land

Physics Issues in HWRF-x

Radiation

Moving nest radiation over land is the main issue

Land surface

Land surface issue is related to radiation as well as land surface model itself

Summary

HRH test is a collective effort

- Moving nest algorithm and its implementation are still at the test stage but it has shown improvement
- Physics implementation within moving nest should be upgraded and improved
- Tracker should be improved
- Initialization within HWRF-x system should be implemented