

Advanced Hurricane-research WRF (AHW) Retrospective Forecasts for HFIP

- Model Configuration
- Initial Impressions of Results
- Lessons Learned

Ryan Torn (U. Albany SUNY)

Chris Davis, Wei Wang, Sherrie Fredrick,
Jimy Dudhia, Rich Rotunno, Jim Bresch and
Greg Holland (NCAR)

Model Configuration

- Model
 - Based on WRF ARW 3.0
 - (a) 12 km (469 by 424) (MMM1)
 - (b)
 - 12 km (469 by 424)
 - 4 km (202 by 202), MMM4
 - 1.33 km (241 by 241), MMM3
 - 34 levels (stretched vertically)
 - 60 s time step on coarse grid

Model Configuration

- Physics

Cumulus	new Kain Fritsch (12 km only)
Microphysics	WSM5
PBL	YSU (1 st -order)
Surface Layer	Monin-Obukov
Land Surface	5-layer thermal diffusion soil model
Radiation	RRTM (longwave)/Dudhia(shortwave)
Ocean	1-D mixed-layer model (with Coriolis)
Surface fluxes	Donelan drag: cap Cd at ~30 m/s Ck/Cd ~ 0.6-1.1

Cd and Ck

Model Configuration

- Ocean feedback
 - Use heat content to determine an effective mixed-layer depth.
 - Horizontal variation of MLD “mirrors” variation of heat content.

$$D = Z - \left(\frac{2(T_s Z - H)}{\Gamma} \right)^{\frac{1}{2}}$$

- $D = \text{MLD}$, $T_s = \text{SST}$, $Z = 100 \text{ m}$, $G = 0.15 \text{ K/m}$, $H = \text{Heat Content}$

$$H = \int_z^0 T dz$$

Ocean MLD

Estimated MLD

SST Change: Katrina

Model Configuration

- Initialization
 - EnKF, 96 members
 - 6-hour cycling mode
 - 36-km grid
 - Assimilating surface pressure, rawinsonde (including G-IV dropsondes), ACARS, cloud motion vectors and tropical cyclone best track data each six hours.
 - Six-hour GFS forecasts on lateral boundaries
 - Initialized roughly two days prior to depression stage
 - Balanced perturbations from WRF-Var added GFS 36-h forecast*

*Using an old forecast with high amplitude perturbations helps the ensemble develop a flow-dependent ensemble quicker than starting from short-term forecasts.

Initial Results: Ensemble

- Ensemble: Limitations in representing intensity and structure in initial condition
- Generally much smoother start to high-res. with cycling than with cold start.
- Reasonable predictability and small bias for TS-force wind radius.

RMS errors

TC Forecast Track Errors

TC Forecast Intensity Errors

WRF EnKF

Ens. Std. Dev.

GFS

WRF-GFS

NHC

Wind Radii Errors

Intensity Verification PDFs

Analysis

36-48 Hour Forecast

Purple: $0 \leq p \leq 0.0025$; dark blue: $0.0025 \leq p \leq 0.005$, light blue: $0.005 \leq p \leq 0.01$; green: $0.01 \leq p \leq 0.015$, yellow: $0.015 \leq p \leq 0.025$, orange: $0.025 \leq p \leq 0.05$, red: $p \geq 0.05$

Katrina

- 12-km wanted to produce elliptical cores. 1.33 km showed various structures, most of which highly transient.
- Track of 12-km systematically west of 1.33-km track. This turned out to be better.

2005-08-29_01:00:00

Sea Level Pressure
Nest: start 01Z 29 Aug.

12 km: start 05Z 29 Aug.

Felix: small inner core

MM4 09/01/2007 (12:00) 48 hr fcst

Valid 09/03/2007 12:00 UTC

Sfc Wind (kt)

Hurricane Felix 1330 UTC 03 SEP 2007

Max 1-min sustained surface winds (kt)

Valid for marine exposure over water, open terrain exposure over land
 Analysis based on CREWS, BUOY from 0800 - 1200 z; SHIP from 0800 - 1200 z; GPSONDE_WL150 from 1108 - 1230 z;
 TAILODOPPLER (User-defined adjusted) from 1109 - 1227 z;
 METAR from 0800 - 1300 z; SFMR43 from 0929 - 1323 z;
 1330 z position extrapolated from 1228 z Estimator tool wind center using 280 deg @ 18 kts; mslp = 931.0 mb

Integrated Kinetic Energy > TS: 17 TJ > Hurricane: 6 TJ
 Destructive Potential Rating(0-6) Wind: 4.9 Surge/Waves: 2.4
 Observed Max. Surface Wind: 137 kts, 6 nm NE of center based on 1229 z SFMR43
 Analyzed Max. Wind: 136 kts, 9 nm NE of center
 Experimental research product of NOAA / AOML / Hurricane Research Division

Intensity Change: Katrina

Hypothesis:
Intensity-change predictability limited to ~ 2 days or less.

Felix

- Coarse-resolution struggles
- Short-time-scale fluctuations of intensity missed

Rita:

Analysis deficient near maximum intensity

MMM Initial time: 2005092200 UTC

MMM Initial time: 2005092200 UTC

Track: Either one can be better

Red=Analysis, Blue=low, Orange=high

Black dots every 24 hours starting at initial time

Red=Analysis, Blue=low, Orange=high

Black dots every 24 hours starting at initial time

Lessons Learned

- No matter how long you think it will take, it will take longer.
- Ocean feedback took a lot of time to implement
- High res. produces lots of interesting structure. Not sure how much of it is right, but it looks plausible.
- Running large outer domain a bigger pain than originally thought.
- Ensemble initialization very promising, but spread still too small and model bias can be large.
- Case-to-case variability is large, but within-case performance of 12-km vs. 1.33 km fairly consistent.