Advanced Hurricane-research WRF (AHW) Retrospective Forecasts for HFIP

- •Model Configuration
- Initial Impressions of Results
- Lessons Learned

Ryan Torn (U. Albany SUNY)

Chris Davis, Wei Wang, Sherrie Fredrick, Jimy Dudhia, Rich Rotunno, Jim Bresch and Greg Holland (NCAR)

- Model
 - Based on WRF ARW 3.0
 - (a) 12 km (469 by 424) (MMM1)
 - (b)
 - 12 km (469 by 424)
 - 4 km (202 by 202), MMM4
 - 1.33 km (241 by 241), MMM3
 - 34 levels (stretched vertically)
 - 60 s time step on coarse grid

• Physics

Cumulus	new Kain Fritsch (12 km only)		
Microphysics	WSM5		
PBL	YSU (1 st -order)		
Surface Layer	Monin-Obukov		
Land Surface	5-layer thermal diffusion soil model		
Radiation	RRTM (longwave)/Dudhia(shortwave)		
Ocean	1-D mixed-layer model (with Coriolis)		
Surface fluxes	Donelan drag: cap Cd at ~30 m/s		
	Ck/Cd ~ 0.6-1.1		

- Ocean feedback
 - Use heat content to determine an effective mixed-layer depth.
 - Horizontal variation of MLD "mirrors" variation of heat content.

$$D = Z - \left(\frac{2(T_s Z - H)}{\Gamma}\right)^{\frac{1}{2}}$$

D=MLD, T_s=SST, Z=100 m, G=0.15K/m, H=Heat Content

$$H = \int_{Z}^{0} T dz$$

Ocean MLD

Estimated MLD

SST Change: Katrina

SST after minus SST before (K)

- Initialization
 - EnKF, 96 members
 - 6-hour cycling mode
 - 36-km grid
 - Assimilating surface pressure, rawinsonde (including G-IV dropsondes), ACARS, cloud motion vectors and tropical cyclone best track data each six hours.
 - Six-hour GFS forecasts on lateral boundaries
 - Initialized roughly two days prior to depression stage
 - Balanced perturbations from WRF-Var added GFS 36-h forecast*

*Using an old forecast with high amplitude perturbations helps the ensemble develop a flow-dependent ensemble quicker than starting from short-term forecasts.

Initial Results: Ensemble

- Ensemble: Limitations in representing intensity and structure in initial condition
- Generally much smoother start to high-res. with cycling than with cold start.
- Reasonable predictability and small bias for TS-force wind radius.

Wind Radii Errors

Intensity Verification PDFs

Analysis

36-48 Hour Forecast

Purple: $0 \le p \le 0.0025$; dark blue: $0.0025 \le p \le 0.005$, light blue: $0.005 \le p \le 0.01$; green: $0.01 \le p \le 0.015$, yellow $0.015 \le p \le 0.025$, orange $0.025 \le p \le 0.05$, red $p \ge 0.05$

Katrina

- 12-km wanted to produce elliptical cores. 1.33 km showed various structures, most of which highly transient.
- Track of 12-km systematically west of 1.33-km track. This turned out to be better.

Felix: small inner core

Intensity Change: Katrina

Hypothesis: Intensity-change predictability limited to ~ 2 days or less.

Felix

Coarse-resolution strugglesShort-time-scale fluctuations of intensity missed

Analysis deficient near maximum intensity

Track: Either one can be better

Red=Analysis, Blue=low, Orange=high

Black dots every 24 hours starting at initial time

Red=Analysis, Blue=low, Orange=high

Black dots every 24 hours starting at initial time

Lessons Learned

- No matter how long you think it will take, it will take longer.
- Ocean feedback took a lot of time to implement
- High res. produces lots of interesting structure. Not sure how much of it is right, but it looks plausible.
- Running large outer domain a bigger pain than originally thought.
- Ensemble initialization very promising, but spread still too small and model bias can be large.
- Case-to-case variability is large, but within-case performance of 12-km vs. 1.33 km fairly consistent.