UW-Madison Efforts as Part of the HFIP HRH Test

William E. Lewis

Multiscale Atmospheric Simulation Laboratory

Department of Atmospheric and Oceanic Sciences Space Sciences and Engineering Center University of Wisconsin – Madison

> Collaborators: Greg Tripoli Tempei Hashino

Outline

- Overview of Model Physics, Dynamics and Configuration
- Results and Lessons Learned (aka Trials, Tribulations and ... Simulations)
- Future Plans

UW-NMS Dynamics

$$\frac{\partial u_i}{\partial t} = -\varepsilon_{i,j,k} (\zeta_j + f_j) u_k - \frac{\partial k}{\partial x_i} - \theta \frac{\partial \pi}{\partial x_i} + \delta_{i3} g$$

 $\varepsilon_{i,j,k} = \begin{cases} 0 & if & i=j, \text{ or } j=k, \text{ or } i=k \\ 1 & if & i,j,k \text{ are } 1,2,3 \text{ or } 2,3,1 \text{ or } 3,1,2 \\ -1 & if & i,j,k \text{ are } 3,2,1 \text{ or } 2,1,3 \text{ or } 1,3,2 \end{cases} \qquad \pi = c_p \left(\frac{1}{16}\right)^{-1}$

$$\pi = c_p \left(\frac{p}{1000mb}\right)^{\frac{R}{c_p}}$$

$$k = \frac{1}{2} \left(u_i^2 \right) \qquad \qquad \zeta_i = \varepsilon_{i,j,k} \frac{\partial u_j}{\partial x_k} \qquad \qquad \varepsilon_{i,j,k} A_j B_k = \vec{A} \times \vec{B}$$

Finite differencing accomplished with Arakawa and Lamb (1981) vorticity, kinetic energy and enstrophy conserving scheme.

Conservative Dynamics Impact

Conservative Dynamics Impact

Impact on TC simulation remains to be verified – coming soon to a theater near you....

Physics

Cumulus	None
Microphysics	Flatau (1989) and Tripoli; 2-moment prognostic scheme (spedific humidity and number concentration) for all species except cloud water
PBL	K theory (horizontal), TKE (vertical)
Surface Layer	Simple Bulk ($C_H = C_M = C_D$)
Land Surface	1d soil model (Tremback and Kessler, 1985)
Radiation	RRTM (Mlawer et al., 1997a; Mlawer and Clough, 1997b)

Ocean

• 1.5 – layer ocean (mixed-layer, thermocline)

Wilma 2005101800 48-hr FCST

ΔSST (°C)

Δh (m)

Configuration

• Atmosphere

- 12km (640x640), 3km (302x302), 1km (353x353)
- 46 levels (200m through 2km, stretched to 700m at 22.8km)
- GFDL IC, GFS BC

• Ocean

- 12km (640x640); u,v,h,T interpolated to grids 2 and 3.
- Initial SST, ML depth and subsurface temperature gradient from HYCOM north and equatorial Atlantic analyses.

Tribulations

• Porting UW-NMS Code to Bluefire turned out to be a non-trivial task

• Complete OMP implementation and optimization ~ several months

• Output module was less a problem for us (though Ligia may disagree!)

Trials

- Shared-memory environment (max 32 CPUs per run on Bluefire) BCS*:
 - 2 days for 126-hr forecast on 1 grid
 - 5 days for 126-hr forecast on 2 grids
 - 12 days for 126-hr forecast on 3 grids

• Clearly, we need (re)distributive change!

* Best Case Scenario given queue vicissitudes

Simulations

- Complete*:
 - Wilma 2005101600 (1 and 2 grids)
 - Wilma 2005101700 (1, 2 and 3 grids)
 - Wilma 2005101800 (1 and 2 grids)
- Current plan: finish the Wilma cases before 27 May (at least 3 runs at high resolution)

* Though currently being re-run

Why High Resolution?

No doubt many processes / phenomena important in TC evolution benefit from an increase in resolution.

Which of these have been studied in simpler, more easily understood settings? We'll look at one.

As a nascent tropical storm develops, persistent diabatic heating forms a "tower" of PV. When an eye develops, diabatic heating and PV production is confined to an annulus. This results in a "hollow tower" PV structure (Möller and Smith 1994).

The radial gradient of PV changes sign and the flow can support barotropic instability (Schubert et al. 1999).

Questions

Outside the idealized framework, what is the role of model resolution in the PV mixing process?

In particular, can a hurricane simulated at 12-km support the establishment of sharp (→ vortex sheet) PV gradients?

-4

Plans

- Finish analysis of HRH runs (PV-mixing episodes) at 12-, 3- and 1-km. Intensity and resolution relationships?
- Ensemble applications (group dependent): Single vs. multi-model Resolution vs. sample size
- EnKF (+TMI, SSM/I, GOES)

UW-NMS Upgrades

- NOAH LSM
- \checkmark
- Sea Spray (Andreas)
- YSU PBL
- 3-D Ocean w/ wave model
- MPI!!
- AMPS microphysics
- PPM scalar advection